

Java Web Scraping Handbook
Kevin Sahin

This book is for sale at http://leanpub.com/webscrapinghandbook

This version was published on 2018-07-26

This is a Leanpub book. Leanpub empowers authors and publishers with the
Lean Publishing process. Lean Publishing is the act of publishing an
in-progress ebook using lightweight tools and many iterations to get reader
feedback, pivot until you have the right book and build traction once you do.

© 2016 - 2018 Kevin Sahin

http://leanpub.com/webscrapinghandbook
http://leanpub.com/
http://leanpub.com/manifesto

Contents

Introduction to Web scraping . 1
Web Scraping VS APIs . 1
Web scraping use cases . 3
What you will learn in this book . 6

Web fundamentals . 8
HyperText Transfer Protocol . 8
HTML and the Document Object Model 11
Web extraction process . 17
Xpath . 18
Regular Expression . 23

Extracting the data you want . 26
Tools . 26
Let’s scrape Hacker News . 27
Go further . 33

Handling forms . 34
Form Theory . 35
Case study: Hacker News authentication 47
File Upload . 50
Other forms . 52

Dealing with Javascript . 56
Javascript 101 . 56
Headless Chrome . 61

CONTENTS

Selenium API . 66
Infinite scroll . 67

Captcha solving, PDF parsing, and OCR . 77
Captcha solving . 77
PDF parsing . 85
Optical Caracter Recognition . 90

Stay under cover . 94
Headers . 94
Proxies . 97
TOR: The Onion Router . 98
Tips . 100

Cloud scraping . 102
Serverless . 102
Deploying an Azure function . 103
Conclusion . 110

Introduction to Web scraping
Web scraping or crawling is the act of fetching data from a third party website
by downloading and parsing the HTML code to extract the data you want. It
can be done manually, but generally this term refers to the automated process
of downloading the HTML content of a page, parsing/extracting the data, and
saving it into a database for further analysis or use.

Web Scraping VS APIs

When a website wants to expose data/features to the developper community,
they will generally build an API(Application Programming Interface¹). The
API consists of a set of HTTP requests, and generally responds with JSON or
XML format. For example, let’s say you want to know the real time price of the
Ethereum cryptocurrency in your code. There is no need to scrape a website
to fetch this information since there are lots of APIs that can give you a well
formated data :

curl https://api.coinmarketcap.com/v1/ticker/ethereum/?convert=EUR

and the response :

¹https://en.wikipedia.org/wiki/Application_programming_interface

https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface

Introduction to Web scraping 2

Coinmarketcap JSON response

{

id: "ethereum",

name: "Ethereum",

symbol: "ETH",

rank: "2",

price_usd: "414.447",

price_btc: "0.0507206",

24h_volume_usd: "1679960000.0",

market_cap_usd: "39748509988.0",

available_supply: "95907342.0",

total_supply: "95907342.0",

max_supply: null,

percent_change_1h: "0.64",

percent_change_24h: "13.38",

percent_change_7d: "25.56",

last_updated: "1511456952",

price_eur: "349.847560557",

24h_volume_eur: "1418106314.76",

market_cap_eur: "33552949485.0"

}

We could also imagine that an E-commerce website has an API that lists every
product through this endpoint :

curl https://api.e-commerce.com/products

It could also expose a product detail (with “123” as id) through :

curl https://api.e-commerce.com/products/123

Since not every website offers a clean API, or an API at all, web scraping can
be the only solution when it comes to extracting website informations.

Introduction to Web scraping 3

APIs are generally easier to use, the problem is that lots of web-
sites don’t offer any API. Building an API can be a huge cost for
companies, you have to ship it, test it, handle versioning, create the
documentation, there are infrastructure costs, engineering costs etc.
The second issue with APIs is that sometimes there are rate limits
(you are only allowed to call a certain endpoint X times per day/hour),
and the third issue is that the data can be incomplete.

The good news is : almost everything that you can see in your browser can
be scraped.

Web scraping use cases

Almost everything can be extracted from HTML, the only information that is
“difficult” to extract is inside images or other medias. Here are some industries
where webscraping is being used :

• News portals : to aggregate articles from different datasources : Reddit /
Forums / Twitter / specific news websites

• Real Estate Agencies.
• Search Engine
• The travel industry (flight/hotels prices comparators)
• E-commerce, to monitor competitor prices
• Banks : bank account aggregation (like Mint and other similar apps)
• Journalism : also called “Data-journalism”
• SEO
• Data analysis
• “Data-driven” online marketing
• Market research
• Lead generation …

Introduction to Web scraping 4

As you can see, there are many use cases to web scraping.

Mint.com screenshot

Mint.com is a personnal finance management service, it allows you to track
the bank accounts you have in different banks in a centralized way, and
many different things. Mint.com uses web scraping to perform bank account
aggregation for its clients. It’s a classic problem we discussed earlier, some
banks have an API for this, others do not. So when an API is not available,
Mint.com is still able to extract the bank account operations.

A client provides his bank account credentials (user ID and password), and
Mint robots use web scraping to do several things :

• Go to the banking website
• Fill the login form with the user’s credentials
• Go to the bank account overview
• For each bank account, extract all the bank account operations and save
it intothe Mint back-end.

• Logout

With this process, Mint is able to support any bank, regardless of the existance
of an API, and no matter what backend/frontend technology the bank uses.
That’s a good example of how useful and powerful web scraping is. The

Introduction to Web scraping 5

drawback of course, is that each time a bank changes its website (even a simple
change in the HTML), the robots will have to be changed as well.

Parsely Dashboard

Parse.ly is a startup providing analytics for publishers. Its plateform crawls the
entire publisher website to extract all posts (text, meta-data…) and perform
Natural Language Processing to categorize the key topics/metrics. It allows
publishers to understand what underlying topics the audiance likes or dislikes.

Introduction to Web scraping 6

Jobijoba meta-search engine

Jobijoba.com is a French/European startup running a plateform that aggre-
gates job listing from multiple job search engines like Monster, CareerBuilder
and multiple “local” job websites. The value proposition here is clear, there
are hundreds if not thousands of job plateforms, applicants need to create as
many profiles on these websites for their job search and Jobijoba provides
an easy way to visualize everything in one place. This aggregation problem
is common to lots of other industries, as we saw before, Real-estate, Travel,
News, Data-analysis…

As soon as an industry has a web presence and is really
fragmentated into tens or hundreds of websites, there is an
“aggregation opportunity” in it.

What you will learn in this book

In 2017, web scraping is becoming more and more important, to deal with the
huge amount of data the web has to offer. In this book you will learn how

Introduction to Web scraping 7

to collect data with web scraping, how to inspect websites with Chrome dev
tools, parse HTML and store the data. You will learn how to handle javascript
heavy websites, find hidden APIs, break captchas and how to avoid the classic
traps and anti-scraping techniques.

Learning web scraping can be challenging, this is why I aim at explaining just
enough theory to understand the concepts, and immediatly apply this theory
with practical and down to earth examples. We will focus on Java, but all
the techniques we will see can be implemented in many other languages, like
Python, Javascript, or Go.

Web fundamentals
The internet is really complex : there are many underlying techologies and
concepts involved to view a simple web page in your browser. I don’t have
the pretention to explain everything, but I will show you the most important
things you have to understand to extract data from the web.

HyperText Transfer Protocol

From Wikipedia :

The Hypertext Transfer Protocol (HTTP) is an application pro-
tocol for distributed, collaborative, and hypermedia information
systems.[1] HTTP is the foundation of data communication for the
World Wide Web. Hypertext is structured text that uses logical links
(hyperlinks) between nodes containing text. HTTP is the protocol to
exchange or transfer hypertext.

So basically, as in many network protocols, HTTP uses a client/servermodel,
where an HTTP client (A browser, your Java program, curl, wget…) opens a
connection and sends a message (“I want to see that page : /product”)to an
HTTP server (Nginx, Apache…). Then the server answers with a response
(The HTML code for exemple) and closes the connection. HTTP is called a
stateless protocol, because each transaction (request/response) is indepen-
dant. FTP for example, is stateful.

Structure of HTTP request

When you type a website adress in your browser, it sends and HTTP request
like this one :

Web fundamentals 9

Http request

GET /how-to-log-in-to-almost-any-websites/ HTTP/1.1

Host: ksah.in

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/web\

p,*/*;q=0.8

Accept-Encoding: gzip, deflate, sdch, br

Connection: keep-alive

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_6) AppleWebKit\

/537.36 (KHTML, like Gecko) Chrome/56.0.2924.87 Safari/537.36

In the first line of this request, you can see the GET verb or method being used,
meaningwe request data from the specific path : /how-to-log-in-to-almost-any-websites/.
There are other HTTP verbs, you can see the full list here². Then you can see
the version of the HTTP protocol, in this book we will focus on HTTP 1. Note
that as of Q4 2017, only 20% of the top 10 million websites supports HTTP/2.
And finally, there is a key-value list called headersHere is the most important
header fields :

• Host : The domain name of the server, if no port number is given, is
assumed to be 80.

• User-Agent : Contains information about the client originating the
request, including the OS information. In this case, it is my web-browser
(Chrome), on OSX. This header is important because it is either used for
statistics (How many users visit my website on Mobile vs Desktop) or
to prevent any violations by bots. Because these headers are sent by the
clients, it can be modified (it is called “Header Spoofing”), and that is
exactly what we will do with our scrapers, to make our scrapers look like
a normal web browser.

• Accept : The content types that are acceptable as a response. There
are lots of different content types and sub-types: text/plain, text/html,
image/jpeg, application/json …

²https://www.w3schools.com/tags/ref_httpmethods.asp

https://www.w3schools.com/tags/ref_httpmethods.asp
https://www.w3schools.com/tags/ref_httpmethods.asp

Web fundamentals 10

• Cookie : name1=value1;name2=value2… This header field contains a list
of name-value pairs. It is called session cookies, these are used to store
data. Cookies are what websites use to authenticate users, and/or store
data in your browser. For example, when you fill a login form, the server
will check if the credentials you entered are correct, if so, it will redirect
you and inject a session cookie in your browser. Your browser will then
send this cookie with every subsequent request to that server.

• Referer : The Referer header contains the URL from which the actual
URL has been requested. This header is important because websites use
this header to change their behavior based on where the user came from.
For example, lots of news websites have a paying subscription and let you
view only 10% of a post, but if the user came from a news aggregator like
Reddit, they let you view the full content. They use the referer to check
this. Sometimes we will have to spoof this header to get to the content
we want to extract.

And the list goes on…you can find the full header list here³

The server responds with a message like this :

Http response

HTTP/1.1 200 OK

Server: nginx/1.4.6 (Ubuntu)

Content-Type: text/html; charset=utf-8

<!DOCTYPE html>

<html>

<head>

<meta charset="utf-8" />

...[HTML CODE]

On the first line, we have a new piece of information, the HTTP code 200 OK.
It means the request has succeeded. As for the request headers, there are lots
of HTTP codes, split in four common classes :

³https://en.wikipedia.org/wiki/List_of_HTTP_header_fields

https://en.wikipedia.org/wiki/List_of_HTTP_header_fields
https://en.wikipedia.org/wiki/List_of_HTTP_header_fields

Web fundamentals 11

• 2XX : Successful, understood, and accepted requests
• 3XX : This class of status code requires the client to take action to fulfill
the request (i.e generally request a newURL, found in the response header
Location)

• 4XX : Client Error : 400 Bad Request is due to a malformed synthax in the
request, 403 Forbidden the server is refusing to fulfill the request, 404 Not

Found The most famous HTTP code, the server did not find the resource
requested.

• 5XX : Server errors

Then, in case you are sending this HTTP request with your web browser, the
browser will parse the HTML code, fetch all the eventual assets (Javascript
files, CSS files, images…) and it will render the result into the main window.

HTML and the Document Object Model

I am going to assume you already knowHTML, so this is just a small reminder.

• HyperText Markup Language (HTML) is used to add “meaning” to raw
content.

• Cascading Style Sheet (CSS) is used to format this marked up content.
• Javascript makes this whole thing interractive.

As you already know, a web page is a document containing text within
tags, that add meaning to the document by describing elements like titles,
paragraphs, lists, links etc. Let’s see a basic HTML page, to understand what
the Document Object Model is.

Web fundamentals 12

HTML page

<!doctype html>

<html>

<head>

<meta charset="utf-8">

<title>What is the DOM ?</title>

</head>

<body>

<h1>DOM 101</h1>

<p>Websraping is awsome !</p>

<p>Here is my blog</p>

</body>

</html>

This HTML code is basically HTML content encapsulated inside other HTML
content. The HTML hierarchy can be viewed as a tree. We can already see
this hierarchy through the indentation in the HTML code. When your web
browser parses this code, it will create a tree which is an object representation
of the HTML document. It is called the Document Oject Model. Below is the
internal tree structure inside Google Chrome inspector :

Chrome Inspector

On the left we can see the HTML tree, and on the right we have the Javascript

Web fundamentals 13

object representing the currently selected element (in this case, the <p> tag),
with all its attributes. And here is the tree structure for this HTML code :

The important thing to remember is that the DOM you see in your
browser, when you right click + inspect can be really different from
the actual HTML that was sent. Maybe some Javascript code was
executed and dynamically changed the DOM ! For example, when
you scroll on your twitter account, a request is sent by your browser
to fetch new tweets, and some Javascript code is dynamically adding
those new tweets to the DOM.

Dom Diagram

The root node of this tree is the <html> tag. It contains two children :
<head>and <body>. There are lots of node types in the DOM specification⁴ but
here is the most important one :

• ELEMENT_NODE the most important one, example : <html>, <body>, <a>,
it can have a child node.

• TEXT_NODE like the red ones in the diagram, it cannot have any child
node.

⁴https://www.w3.org/TR/dom/

https://www.w3.org/TR/dom/
https://www.w3.org/TR/dom/

Web fundamentals 14

The Document Object Model provides a programmatic way (API) to add,
remove, modify, or attach any event to a HTML document using Javascript.
The Node object has many interesting properties and methods to do this, like
:

• Node.childNodes returns a list of all the children for this node.
• Node.nodeTypereturns an unsigned short representing the type of the
node (1 for ELEMENT_NODE, 3 for TEXT_NODE …).

• Node.appendChild() adds the child node argument to the last child of the
current node.

• Node.removeChild() removes the child node argument from the current
node.

You can see the full list here⁵. Now let’s write some Javascript code to
understand all of this :

First let’s see howmany child nodes our <head> element has, and show the list.
To do so, we will write some Javascript code inside the Chrome console. The
document object in Javascript is the owner of all other objects in the web page
(including every DOM nodes.)
We want to make sure that we have two child nodes for our head element. It’s
simple :

How many childnodes ?

document.head.childNodes.length

And then show the list :

⁵https://developer.mozilla.org/en-US/docs/Web/API/Node

https://developer.mozilla.org/en-US/docs/Web/API/Node
https://developer.mozilla.org/en-US/docs/Web/API/Node

Web fundamentals 15

head’s childnode list

for (var i = 0; i < document.head.childNodes.length; i++) {

console.log(document.head.childNodes[i]);

}

Web fundamentals 16

Javascript example

What an unexpected result ! It shows five nodes instead of the expected two.

Web fundamentals 17

We can see with the for loop that three text nodes were added. If you click on
the this text nodes in the console, you will see that the text content is either
a linebreak or tabulation (\n or \t). In most modern browsers, a text node is
created for each whitespace outside a HTML tags.

This is something really important to remember when you use
the DOM API. So the previous DOM diagram is not exactly true,
in reality, there are lots of text nodes containing whitespaces
everywhere. For more information on this subject, I suggest you to
read this article from Mozilla : Whitespace in the DOM⁶

In the next chapters, we will not use directly the Javascript API to manipulate
the DOM, but a similar API directly in Java. I think it is important to know
how things works in Javascript before doing it with other languages.

Web extraction process

In order to go to a URL in your code, fetch the HTML code and parse it to
extract the date we can use different things :

• Headless browser
• Do things more “manually” : Use an HTTP library to perform the GET
request, then use a library like Jsoup⁷ to parse the HTML and extract the
data you want

Each option has its pros and cons. A headless browser is like a normal web
browser, without the Graphical User Interface. It is often used for QA reasons,
to perform automated testing on websites. There are lots of different headless
browsers, like Headless Chrome⁸, PhantomJS⁹, HtmlUnit¹⁰, we will see this

⁶https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Whitespace_in_the_DOM
⁷https://jsoup.org/
⁸https://chromium.googlesource.com/chromium/src/+/lkgr/headless/README.md
⁹http://phantomjs.org/
¹⁰http://htmlunit.sourceforge.net/

https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Whitespace_in_the_DOM
https://jsoup.org/
https://chromium.googlesource.com/chromium/src/+/lkgr/headless/README.md
http://phantomjs.org/
http://htmlunit.sourceforge.net/
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Whitespace_in_the_DOM
https://jsoup.org/
https://chromium.googlesource.com/chromium/src/+/lkgr/headless/README.md
http://phantomjs.org/
http://htmlunit.sourceforge.net/

Web fundamentals 18

later. The good thing about a headless browser is that it can take care of lots of
things : Parsing the HTML, dealing with authentication cookies, fill in forms,
execute Javascript functions, access iFrames… The drawback is that there is of
course some overhead compared to using a plain HTTP library and a parsing
library.

In the next three sections we will see how to select and extract data inside
HTML pages, with Xpath, CSS selectors and regular expressions.

Xpath

Xpath is a technology that uses path expressions to select nodes or node-
sets in an XML document (or HTML document). As with the Document
Object Model, Xpath is a W3C standard since 1999. Even if Xpath is not a
programming language in itself, it allows you to write expression that can
access directly to a specific node, or a specific node set, without having to go
through the entire HTML tree (or XML tree).

Entire books has been written on Xpath, and as I said before I don’t have the
pretention to explain everything in depth, this is an introduction to Xpath and
we will see through real examples how you can use it for your web scraping
needs.

We will use the following HTML document for the examples below:

Web fundamentals 19

HTML example

<!doctype html>

<html>

<head>

<meta charset="utf-8">

<title>Xpath 101</title>

</head>

<body>

<div class="product">

<header>

<hgroup>

<h1>Amazing product #1</h1>

<h3>The best product ever made</h4>

</hgroup>

</header>

<figure>

</figure>

<section>

<p>Text text text</p>

<details>

<summary>Product Features</summary>

Feature 1

<li class="best-feature">Feature 2

<li id="best-id">Feature 3

</details>

<button>Buy Now</button>

</section>

Web fundamentals 20

</div>

</body>

</html>

First let’s look at some Xpath vocabulary :

• In Xpath terminology, as with HTML, there are different types of nodes :
root nodes, element nodes, attribute nodes, and so called atomic values
which is a synonym for text nodes in an HTML document.

• Each element node has one parent. in this example, the section element
is the parent of p, details and button.

• Element nodes can have any number of children. In our example, li
elements are all children of the ul element.

• Siblings are nodes that have the same parents. p, details and button are
siblings.

• Ancestors a node’s parent and parent’s parent…
• Descendants a node’s children and children’s children…

Xpath Syntax

There are different types of expressions to select a node in anHTML document,
here are the most important ones :

Xpath Expression Description

nodename This is the simplest one, it select all nodes
with this nodename

/ Selects from the root node (useful for
writing absolute path)

// Selects nodes from the current node that
matches

. Selects the current node

.. Selects the current node’s parent

Web fundamentals 21

Xpath Expression Description

@ Selects attribute
* Matches any node
@* Matches any attribute node

You can also use predicates to find a node that contains a specific value.
Predicate are always in square brackets : [predicate] Here are some examples
:

Xpath Expression Description

//li[last()] Selects the last li element
//div[@class='product'] Selects all div elements that have the

class attribute with the product value.
//li[3] Selects the third li element (the index

starts at 1)
//div[@class='product'] Selects all div elements that have the

class attribute with the product value.

Now we will see some example of Xpath expressions. We can test XPath
expressions inside Chrome Dev tools, so it is time to fire up Chrome. To do so,
right click on the web page -> inspect and then cmd + f on a Mac or ctrl + f

on other systems, then you can enter an Xpath expression, and the match will
be highlighted in the Dev tool.

Web fundamentals 22

Web fundamentals 23

In the dev tools, you can right click on any DOM node, and show its
full Xpath expression, that you can later factorize. There is a lot more
that we could discuss about Xpath, but it is out of this book’s scope,
I suggest you to read this great W3School tutorial¹¹ if you want to
learn more.

In the next chapter we will see how to use Xpath expression inside our Java
scraper to select HTML nodes containing the data we want to extract.

Regular Expression

A regular expression (RE, or Regex) is a search pattern for strings. With regex,
you can search for a particular character/word inside a bigger body of text.
For example you could identify all phone numbers inside a web page. You can
also replace items, for example you could replace all upercase tag in a poorly
formatted HTML by lowercase ones. You can also validate some inputs …

The pattern used by the regex is applied from left to right. Each source
character is only used once. For example, this regex : oco will match the string
ococo only once, because there is only one distinct sub-string that matches.

Here are some common matchings symbols, quantifiers and meta-characters :

Regex Description

Hello World Matches exactly “Hello World”
. Matches any character
[] Matches a range of character within the brackets,

for example [a-h] matches any character between
a and h. [1-5] matches any digit between 1 and 5

[^xyz] Negation of the previous pattern, matches any
character except x or y or z

* Matches zero or more of the preceeding item
+ Matches one or more of the preceeding item

¹¹https://www.w3schools.com/xml/xpath_intro.asp

https://www.w3schools.com/xml/xpath_intro.asp
https://www.w3schools.com/xml/xpath_intro.asp

Web fundamentals 24

Regex Description

? Matches zero or one of the preceeding item
{x} Matches exactly x of the preceeding item
\d Matches any digit
D Matches any non digit
\s Matches any whitespace character
S Matches any non-whitespace character
(expression) Capture the group matched inside the parenthesis

You may be wondering why it is important to know about regular expressions
when doing web scraping ? We saw before that we could select HTML nodes
with the DOM API, and Xpath, so why would we need regular expressions ?
In an ideal semantic world¹², data is easily machine readable, the information
is embedded inside relevant HTML element, with meaningful attributes.

But the real world is messy, you will often find huge amounts of text inside a
p element. When you want to extract a specific data inside this huge text, for
example a price, a date, a name… you will have to use regular expressions.

For example, regular expression can be useful when you have this kind of data
:

<p>Price : 19.99$</p>

We could select this text node with an Xpath expression, and then use this
kind a regex to extract the price :

^Price\s:\s(\d+\.\d{2})\$

This was a short introduction to the wonderful world of regular expressions,
you should now be able to understand this :

¹²https://en.wikipedia.org/wiki/Semantic_Web

https://en.wikipedia.org/wiki/Semantic_Web
https://en.wikipedia.org/wiki/Semantic_Web

Web fundamentals 25

(?:[a-z0-9!#$%&'*+\/=?^_`{|}~-]+(?:\.[a-z0-9!#$%&'*+\/=?^_`{|}~-]+)*|"(\

?:[\x01-

\x08\x0b\x0c\x0e-\x1f\x21\x23-\x5b\x5d-\x7f]|\\[\x01-\x09\x0b\x0c\x0e\x\

7f])*")@(?:(?:[a-z0-9](?:[a-z0-9-]*[a-z0-9])?\.)+[a-z0-9](?:[a-z0-9-]*[\

a-z0-9])?|\[(?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3}(?:25[0-5]\

|2[0-4][0-9]|[01]?[0-9][0-9]?|[a-z0-9-]*[a-z0-9]:(?:[\x01-\x08\x0b\x0c\\

x0e-\x1f\x21-\x5a\x53-\x7f]|\\[\x01-\x09\x0b\x0c\x0e-\x7f])+)\])

I am kidding :) ! This one tries to validate an email address, according to RFC
2822¹³. There is a lot to learn about regular expressions, you can find more
information in this great Princeton tutorial¹⁴

If you want to improve your regex skills or experiment, I suggest you
to use this website : Regex101.com¹⁵ . This website is really interesting
because it allows you not only to test your regular expressions, but
explains each step of the process.

¹³https://tools.ietf.org/html/rfc2822#section-3.4.1
¹⁴https://www.princeton.edu/~mlovett/reference/Regular-Expressions.pdf
¹⁵https://regex101.com/

https://tools.ietf.org/html/rfc2822#section-3.4.1
https://tools.ietf.org/html/rfc2822#section-3.4.1
https://www.princeton.edu/~mlovett/reference/Regular-Expressions.pdf
https://regex101.com/
https://tools.ietf.org/html/rfc2822#section-3.4.1
https://www.princeton.edu/~mlovett/reference/Regular-Expressions.pdf
https://regex101.com/

Extracting the data you want
For our first exemple, we are going to fetch items from Hacker News, although
they offer a nice API, let’s pretend they don’t.

Tools

You will need Java 8 with HtmlUnit¹⁶. HtmlUnit is a Java headless browser, it
is this library that will allow you to perform HTTP requests on websites, and
parse the HTML content.

pom.xml

<dependency>

<groupId>net.sourceforge.htmlunit</groupId>

<artifactId>htmlunit</artifactId>

<version>2.28</version>

</dependency>

If you are using Eclipse, I suggest you configure the max length in the detail
pane (when you click in the variables tab) so that youwill see the entire HTML
of your current page.

¹⁶http://htmlunit.sourceforge.net

http://htmlunit.sourceforge.net/
http://htmlunit.sourceforge.net/

Extracting the data you want 27

Let’s scrape Hacker News

The goal here is to collect the titles, number of upvotes, number of comments
on the first page. We will see how to handle pagination later.

The base URL is : https://news.ycombinator.com/

Now you can open your favorite IDE, it is time to code. HtmlUnit needs a
WebClient tomake a request. There aremany options (Proxy settings, browser,
redirect enabled …) We are going to disable Javascript since it’s not required
for our example, and disabling Javascript makes the page load faster in general
(in this specific case, it does not matter). Then we perform a GET request to

Extracting the data you want 28

the hacker news’s URL, and print the HTML content we received from the
server.

Simple GET request

String baseUrl = "https://news.ycombinator.com/" ;

WebClient client = new WebClient();

client.getOptions().setCssEnabled(false);

client.getOptions().setJavaScriptEnabled(false);

try{

HtmlPage page = client.getPage(baseUrl);

System.out.println(page.asXml());

catch(Exception e){

e.printStackTrace();

}

The HtmlPage object will contain the HTML code, you can access it with the
asXml() method.

Now for each item, we are going to extract the title, URL, author etc. First let’s
take a look at what happens when you inspect a Hacker news post (right click
on the element + inspect on Chrome)

Extracting the data you want 29

With HtmlUnit you have several options to select an html tag :

• getHtmlElementById(String id)

• getFirstByXPath(String Xpath)

• getByXPath(String XPath) which returns a List
• Many more can be found in the HtmlUnit Documentation

Since there isn’t any ID we could use, we have to use an Xpath expression to
select the tags we want. We can see that for each item, we have two lines of

Extracting the data you want 30

text. In the first line, there is the position, the title, the URL and the ID. And
on the second, the score, author and comments. In the DOM structure, each
text line is inside a <tr> tag, so the first thing we need to do is get the full <tr
class="athing">list. Then we will iterate through this list, and for each item
select title, the URL, author etc with a relative Xpath and then print the text
content or value.

HackerNewsScraper.java

Selecting nodes with Xpath

HtmlPage page = client.getPage(baseUrl);

List<HtmlElement> itemList = page.getByXPath("//tr[@class='athing']");

if(itemList.isEmpty()){

System.out.println("No item found");

}else{

for(HtmlElement htmlItem : itemList){

int position = Integer.parseInt(

((HtmlElement) htmlItem.getFirstByXPath("./td/span"))

.asText()

.replace(".", ""));

int id = Integer.parseInt(htmlItem.getAttribute("id"));

String title = ((HtmlElement) htmlItem

.getFirstByXPath("./td[not(@valign='top')][@class='title']"))

.asText();

String url = ((HtmlAnchor) htmlItem

.getFirstByXPath("./td[not(@valign='top')][@class='title']/a"))

.getHrefAttribute();

String author = ((HtmlElement) htmlItem

.getFirstByXPath("./following-sibling::tr/td[@class='subtext']/a[\

@class='hnuser']"))

.asText();

int score = Integer.parseInt(

((HtmlElement) htmlItem

.getFirstByXPath("./following-sibling::tr/td[@class='subtext']/sp\

an[@class='score']"))

.asText().replace(" points", ""));

Extracting the data you want 31

HackerNewsItem hnItem = new HackerNewsItem(title, url, author, scor\

e, position, id);

ObjectMapper mapper = new ObjectMapper();

String jsonString = mapper.writeValueAsString(hnItem) ;

System.out.println(jsonString);

}

}

Printing the result in your IDE is cool, but exporting to JSON or another
well formated/reusable format is better. We will use JSON, with the Jackson¹⁷
library, to map items in JSON format.

First we need a POJO (plain old java object) to represent the Hacker News
items :

HackerNewsItem.java

POJO

public class HackerNewsItem {

private String title;

private String url ;

private String author;

private int score;

private int position ;

private int id ;

public HackerNewsItem(String title, String url, String author, int sco\

re, int position, int id) {

super();

this.title = title;

this.url = url;

¹⁷https://github.com/FasterXML/jackson

https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson

Extracting the data you want 32

this.author = author;

this.score = score;

this.position = position;

this.id = id;

}

//getters and setters

}

Then add the Jackson dependency to your pom.xml : pom.xml

<dependency>

<groupId>com.fasterxml.jackson.core</groupId>

<artifactId>jackson-databind</artifactId>

<version>2.7.0</version>

</dependency>

Now all we have to do is create an HackerNewsItem, set its attributes, and
convert it to JSON string (or a file …). Replace the old System.out.prinln() by
this :

HackerNewsScraper.java

HackerNewsItem hnItem = new HackerNewsItem(title, url, author, score, p\

osition, id);

ObjectMapper mapper = new ObjectMapper();

String jsonString = mapper.writeValueAsString(hnItem) ;

// print or save to a file

System.out.println(jsonString);

And that’s it. You should have a nice list of JSON formatted items.

Extracting the data you want 33

Go further

This example is not perfect, there are many things that can be done :

• Saving the result in a database.
• Handling pagination.
• Validating the extracted data using regular expressions instead
of doing dirty replace().

You can find the full code in this Github repository¹⁸.

¹⁸https://github.com/ksahin/javawebscrapinghandbook_code

https://github.com/ksahin/javawebscrapinghandbook_code
https://github.com/ksahin/javawebscrapinghandbook_code

Handling forms

Typical login form from Digital Ocean website

In this chapter, we are going to see how to handle forms on the web. Knowing
how to submit forms can be critical to extract information behind a login form,
or to perform actions that require to be authenticated. Here are some examples
of actions that require to submit a form :

• Create an account
• Authentication
• Post a comment on a blog
• Upload an image or a file

Handling forms 35

• Search and Filtering on a website
• Collecting a user email
• Collecting payment information from a user
• Any user-generated content !

Form Theory

Form diagram

There are two parts of a functional HTML form: the user interface (defined by
its HTML code and CSS) with different inputs and the backend code, which is
going to process the different values the user entered, for example by storing
it in a database, or charging the credit card in case of a payment form.

Handling forms 36

Form tag

Form diagram 2

HTML forms begins with a <form> tag. There are many attributes¹⁹. The most
important ones are the action and method attribute.

The action attribute represents the URL where the HTTP request will be sent,
and the method attribute specifies which HTTP method to use.

Generally, POSTmethods are used when you create or modify something, for
example:

• Login forms
• Account creation
• Add a comment to a blog
¹⁹https://developer.mozilla.org/en-US/docs/Web/HTML/Element/form

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/form
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/form

Handling forms 37

Form inputs

In order to collect user inputs, the <input> element is used. It is this element
that makes the text field appear. The <input> element has different attributes :

• type: email, text, radio, file, date…
• name: the name associated with the value that will be sent
• many more²⁰

Let’s take an example of a typical login form :

²⁰https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input

Handling forms 38

Classic login form

And here is the corresponding HTML code (CSS code is not included):

Handling forms 39

Form’s HTML code
<form action="login" method="POST">

<div class="imgcontainer">

</div>

<div class="container">

<label for="uname">Username</label>

<input type="text" placeholder="Enter Username" name="uname" requir\

ed>

<label for="psw">Password</label>

<input type="password" placeholder="Enter Password" name="psw" requ\

ired>

<button type="submit">Login</button>

</div>

</form>

When a user fills the form with his credentials, let’s say usernameand my_-

great_password and click the submit button, the request sent by the browser
will look like this :

Http response
POST /login HTTP/1.1

Host: example.com

Content-Type: application/x-www-form-urlencoded

uname=username&psw=my_great_password

Cookies

After the POST request is made, if the credentials are valid the server will
generally set cookies in the response headers, to allow the user to navigate.

Handling forms 40

This cookie is often named (the name depends on the technology/framework
used by the website’s backend):

• session_id
• session
• JSESSION_ID
• PHPSESSID

This cookie will be sent for each subsequent requests by the browser, and the
website’s backend will check its presence and validity to authorize requests.
Cookies are not only used for login, but for lots of different use cases:

• Shopping carts
• User preferences
• Tracking user behavior

Cookies are small key/value pairs stored in the browser, or in an HTTP client,
that looks like this:

cookie_name=cookie_value

An HTTP response that sets a cookie looks like this:

Http response

HTTP/1.0 200 OK

Content-type: text/html

Set-Cookie: cookie_name=cookie_value

An HTTP request with a cookie looks like this:

Handling forms 41

Http request

GET /sample_page.html HTTP/1.1

Host: www.example.org

Cookie: cookie_name=cookie_value

A cookie can have different attributes :

• Expires: Expiration date, by default, cookies expire when the client closes
the connection.

• Secure: only sent to HTTPS URLs
• HttpOnly: Inaccessible to Javascript Document.cookie, to prevent session
hijacking and XSS attack²¹

• Domain: Specifies which host is allowed to receive the cookie

Login forms

To study login forms, let me introduce you the website I made to apply some
example in this book : https://www.javawebscrapingsandbox.com²²

This website will serve for the rest of the book for lots of different examples,
starting with the authentication example. Let’s take a look at the login form
HTML :

²¹https://developer.mozilla.org/en-US/docs/Glossary/Cross-site_scripting
²²https://www.javawebscrapingsandbox.com

https://developer.mozilla.org/en-US/docs/Glossary/Cross-site_scripting
https://www.javawebscrapingsandbox.com/
https://developer.mozilla.org/en-US/docs/Glossary/Cross-site_scripting
https://www.javawebscrapingsandbox.com/

Handling forms 42

Basically, our scraper needs to :

• Get to the login page
• Fills the input with the right credentials
• Submit the form
• Check if there is an error message or if we are logged in.

There are two “difficult” thing here, the XPath expressions to select the
different inputs, and how to submit the form.

To select the email input, it is quite simple, we have to select the first input
inside a form, which name attribute is equal to email, so this XPath attribute
should be ok: //form//input[@name='email'].

Handling forms 43

Same for the password input : //form//input[@name='password']

To submit the form, HtmlUnit provides a great method to select a form :
HtmlForm loginForm = input.getEnclosingForm().

Once you have the form object, you can generate the POST request for this
form using: loginForm.getWebRequest(null) that’s all you have to do :)

Let’s take a look at the full code:

Login example

public class Authentication {

static final String baseUrl = "https://www.javawebscrapingsandbox.com/"\

;

static final String loginUrl = "account/login" ;

static final String email = "test@test.com" ;

static final String password = "test" ;

public static void main(String[] args) throws FailingHttpStatusCodeExce\

ption,

MalformedURLException, IOException, InterruptedException {

WebClient client = new WebClient();

client.getOptions().setJavaScriptEnabled(true);

client.getOptions().setCssEnabled(false);

client.getOptions().setUseInsecureSSL(true);

java.util.logging.Logger.getLogger("com.gargoylesoftware").setLevel(Le\

vel.OFF);

// Get the login page

HtmlPage page = client.getPage(String.

format("%s%s", baseUrl, loginUrl)) ;

// Select the email input

HtmlInput inputEmail = page.getFirstByXPath(

"//form//input[@name='email']");

Handling forms 44

// Select the password input

HtmlInput inputPassword = page.getFirstByXPath(

"//form//input[@name='password']");

// Set the value for both inputs

inputEmail.setValueAttribute(email);

inputPassword.setValueAttribute(password);

// Select the form

HtmlForm loginForm = inputPassword.getEnclosingForm() ;

// Generate the POST request with the form

page = client.getPage(loginForm.getWebRequest(null));

if(!page.asText().contains("You are now logged in")){

System.err.println("Error: Authentication failed");

}else{

System.out.println("Success ! Logged in");

}

}

}

This method works for almost every websites. Sometimes if the website uses a
Javascript framework, HtmlUnit will not be able to execute the Javascript code
(even with setJavaScriptEnabled(true)) and you will have to either 1) inspect
the HTTP POST request in Chrome Dev Tools and recreate it, or use Headless
Chrome which I will cover in the next chapter.

Let’s take a look at the POST request created by HtmlUnit when we call
loginForm.getWebRequest(null). To view this, launch the main method in
debug mode, and inspect the content (ctrl/cmd + MAJ + D in eclipse) :

Handling forms 45

WebRequest[<url="https://www.javawebscrapingsandbox.com/account/login",

POST, EncodingType[name=application/x-www-form-urlencoded],

[csrf_token=1524752332##6997dd9d5ed448484131add18b41a4263541b5c2,

email=test@test.com,

password=test],

{Origin=https://www.javawebscrapingsandbox.com/account/login,

Accept=text/html,application/xhtml+xml,application/xml;q=0.9,image/web\

p,image/apng,*/*;q=0.8,

Cache-Control=max-age=0,

Referer=https://www.javawebscrapingsandbox.com/account/login,

Accept-Encoding=gzip, deflate}, null>]

We have a lot going one here. You can see that instead of just having two
parameters sent to the server (email and password), we also have a csrf_-

token parameter, and its value changes everytime we submit the form. This
parameter is hidden, as you can see in the form’s HTML :

CSRF token

CSRF stands for Cross Site Request Forgery. The token is generated by the
server and is required in every form submissions / POST requests. Almost
every website use this mechanism to prevent CSRF attack. You can learn

Handling forms 46

more about CSRF attack here²³. Now let’s create our own POST request with
HtmlUnit.

The first thing we need is to create a WebRequest object. Then we need to
set the URL, the HTTP method, headers, and parameters. Adding request
header to a WebRequest object is quite simple, all you need to to is to
call the setAdditionalHeader method. Adding parameters to your request
must me done with the setRequestParametersmethod, which takes a list
of NameValuePair. As discussed earlier, we have to add the csrf_token to
the parameters, which can be selected easily with this XPath expression :
//form//input[@name='csrf_token']

Forging the request manually

HtmlInput csrfToken = page.getFirstByXPath("//form//input[@name='csrf_t\

oken']") ;

WebRequest request = new WebRequest(

new URL("http://www.javawebscrapingsandbox.com/account/login"), HttpM\

ethod.POST);

List<NameValuePair> params = new ArrayList<NameValuePair>();

params.add(new NameValuePair("csrf_token", csrfToken.getValueAttribute(\

)));

params.add(new NameValuePair("email", email));

params.add(new NameValuePair("password", password));

request.setRequestParameters(params);

request.setAdditionalHeader("Content-Type", "application/x-www-form-url\

encoded");

request.setAdditionalHeader("Accept-Encoding", "gzip, deflate");

page = client.getPage(request);

²³https://en.wikipedia.org/wiki/Cross-site_request_forgery

https://en.wikipedia.org/wiki/Cross-site_request_forgery
https://en.wikipedia.org/wiki/Cross-site_request_forgery

Handling forms 47

Case study: Hacker News authentication

Let’s say you want to create a bot that logs into a website (to submit a link or
perform an action that requires being authenticated) :

Here is the login form and the associated DOM :

Now we can implement the login algorithm

Handling forms 48

Login algorithm

public static WebClient autoLogin(String loginUrl, String login, String\

password)

throws FailingHttpStatusCodeException, MalformedURLException, IOExcepti\

on{

WebClient client = new WebClient();

client.getOptions().setCssEnabled(false);

client.getOptions().setJavaScriptEnabled(false);

HtmlPage page = client.getPage(loginUrl);

HtmlInput inputPassword = page.getFirstByXPath("

//input[@type='password']");

//The first preceding input that is not hidden

HtmlInput inputLogin = inputPassword.getFirstByXPath("

.//preceding::input[not(@type='hidden')]");

inputLogin.setValueAttribute(login);

inputPassword.setValueAttribute(password);

//get the enclosing form

HtmlForm loginForm = inputPassword.getEnclosingForm() ;

//submit the form

page = client.getPage(loginForm.getWebRequest(null));

//returns the cookie filled client :)

return client;

}

Then the main method, which :

• calls autoLogin with the right parameters
• Go to https://news.ycombinator.com

Handling forms 49

• Check the logout link presence to verify we’re logged
• Prints the cookie to the console

Hacker News login

public static void main(String[] args) {

String baseUrl = "https://news.ycombinator.com" ;

String loginUrl = baseUrl + "/login?goto=news" ;

String login = "login";

String password = "password" ;

try {

System.out.println("Starting autoLogin on " + loginUrl);

WebClient client = autoLogin(loginUrl, login, password);

HtmlPage page = client.getPage(baseUrl) ;

HtmlAnchor logoutLink = page

.getFirstByXPath(String.format(

"//a[@href='user?id=%s']", login)) ;

if(logoutLink != null){

System.out.println("Successfuly logged in !");

// printing the cookies

for(Cookie cookie : client.

getCookieManager().getCookies()){

System.out.println(cookie.toString());

}

}else{

System.err.println("Wrong credentials");

}

} catch (Exception e) {

e.printStackTrace();

}

}

Handling forms 50

You can find the code in this Github repo²⁴

Go further

There are many cases where this method will not work: Amazon, DropBox…
and all other two-steps/captcha-protected login forms.

Things that can be improved with this code :

• Handle the check for the logout link inside autoLogin

• Check for null inputs/form and throw an appropriate exception

File Upload

File upload is not something often used in web scraping. But it can be
interesting to know how to upload files, for example if you want to test your
own website or to automate some tasks on websites.

There is nothing complicated, here is a little form on the sandbox website²⁵
(you need to be authenticated):

Here is the HTML code for the form :
²⁴https://github.com/ksahin/introWebScraping
²⁵https://www.javawebscrapingsandbox.com/upload_file

https://github.com/ksahin/introWebScraping
https://www.javawebscrapingsandbox.com/upload_file
https://github.com/ksahin/introWebScraping
https://www.javawebscrapingsandbox.com/upload_file

Handling forms 51

Form example

<div class="ui text container">

<h1>Upload Your Files Bro</h1>

<form action="/upload_file" method="POST" enctype="multipart/form-data\

">

<label for="user_file">Upload Your File</label>

</br>

<input type="file" name="user_file">

</br>

<button type="submit">Upload</button>

</form>

</div>

As usual, the goal here is to select the form, if there is a name attribute you can
use the method getFormByBame() but in this case there isn’t, so we will use a
good old XPath expression. Then we have to select the input for the file and
set our file name to this input. Note that you have to be authenticated to post
this form.

File upload example

fileName = "file.png" ;

page = client.getPage(baseUrl + "upload_file") ;

HtmlForm uploadFileForm = page.getFirstByXPath("//form[@action='/upload\

_file']");

HtmlFileInput fileInput = uploadFileForm.getInputByName("user_file");

fileInput.setValueAttribute(fileName);

fileInput.setContentType("image/png");

HtmlElement button = page.getFirstByXPath("//button");

page = button.click();

Handling forms 52

if(page.asText().contains("Your file was successful uploaded")){

System.out.println("File successfully uploaded");

}else{

System.out.println("Error uploading the file");

}

Other forms

Search Forms

Another common need when doing web scraping is to submit search forms.
Websites having a large database, like marketplaces often provide a search
form to look for a specific set of items.
There is generally three different ways search forms are implemented :

• When you submit the form, a POST request is sent to the server
• A GET request is sent with query parameters
• An AJAX call is made to the server

As an example, I’ve set up a search form on the sandbox website :

Search Form

Handling forms 53

It is a simple form, there is nothing complicated. As usual, we have to select
the inputs field, fill it with the values we want, and submit the form. We could
also reproduce the POST request manually, as we saw in the beginning of the
chapter. When the server sends the response back, I chose to loop over the
result, and print it in the console (The whole code is available in the repo as
usual.)

Search Form example

HtmlPage page = client.getPage(baseUrl + "product/search");

HtmlInput minPrice = page.getHtmlElementById("min_price");

HtmlInput maxPrice = page.getHtmlElementById("max_price");

// set the min/max values

minPrice.setValueAttribute(MINPRICE);

maxPrice.setValueAttribute(MAXPRICE);

HtmlForm form = minPrice.getEnclosingForm();

page = client.getPage(form.getWebRequest(null));

HtmlTable table = page.getFirstByXPath("//table");

for(HtmlTableRow elem : table.getBodies().get(0).getRows()){

System.out.println(String.format("Name : %s Price: %s", elem.getCell(0\

).asText(), elem.getCell(2).asText()));

}

And here is the result:

Handling forms 54

Ouput

Name : ClosetMaid 1937440 SuiteS Price: 319.89 $

Name : RWS Model 34 .22 Caliber Price: 314.97 $

Name : Neato Botvac D5 Connected Price: 549.00 $

Name : Junghans Men's 'Max Bill' Price: 495.00 $

Basic Authentication

In the 90s, basic authentication was everywhere. Nowadays, it’s rare, but
you can still find it on corporate websites. It’s one of the simplest forms
of authentication. The server will check the credentials in the Authorization

header sent by the client, or issue a prompt in case of a web browser.

If the credentials are not correct, the serverwill respondwith a 401 (Unauthorized)

response status.

Here is the URL on the sandboxwebsite : https://www.javawebscrapingsandbox.com/basic_-
auth

The Username is : basic

Handling forms 55

The password is : auth

It’s really simple to use basic auth with HtmlUnit, all you have to do is format
your URL with this pattern : https://username:password@www.example.com

Basic auth example

HtmlPage page = client.getPage(String.format("https://%s:%s@www.javaweb\

scrapingsandbox.com/basic_auth", username, password));

System.out.println(page.asText());

Dealing with Javascript
Dealing with a website that uses lots of Javascript to render their content can
be tricky. These days, more and more sites are using frameworks like Angular,
React, Vue.js for their frontend. These frontend frameworks are complicated
to deal with because there are often using the newest features of the HTML5
API, and HtmlUnit and other headless browsers do not commonly support
these features.

So basically the problem that you will encounter is that your headless browser
will download the HTML code, and the Javascript code, but will not be able to
execute the full Javascript code, and the webpage will not be totally rendered.

There are some solutions to these problems. The first one is to use a better
headless browser. And the second one is to inspect the API calls that are made
by the Javascript frontend and to reproduce them.

Javascript 101

Javascript is an interpreted scripting language. It’s more and more used to
build “Web applications” and “Single Page Applications”.

The goal of this chapter is not to teach you Javascript, to be honest, I’m a
terrible Javascript developer, but I want you to understand how it is used on
the web, with some examples.

The Javascript syntax is similar to C or Java, supporting common data types,
like Boolean, Number, String, Arrays, Object… Javascript is loosely typed,
meaning there is no need to declare the data type explicitly.

Here is some code examples:

Dealing with Javascript 57

Plus one function

function plusOne(number) {

return number + 1 ;

}

var a = 4 ;

var b = plusOne(a) ;

console.log(b);

// will print 5 in the console

As we saw in chapter 2, Javascript is mainly used on the web to modify the
DOM dynamically and perform HTTP requests. Here is a sample code that
use a stock API to retrieve the latest Apple stock price when clicking a button:

Apple stock price vanilla Javascript

<!DOCTYPE html>

<html>

<head>

<script>

function refreshAppleStock(){

fetch("https://api.iextrading.com/1.0/stock/aapl/batch?types=quot\

e,news,chart&range=1m&last=10")

.then(function(response){

return response.json();

}).then(function(data){

document.getElementById('my_cell').innerHTML = '$' + data.qu\

ote.latestPrice ;

});

}

</script>

</head>

<body>

<div>

<h2>Apple stock price:</h2>

<div id="my_cell">

</div>

Dealing with Javascript 58

<button id="refresh" onclick="refreshAppleStock()">Refresh</button>

</div>

</body>

</html>

Jquery

jQuery²⁶ is one of the most used Javascript libraries. It’s really old, the first
version was written in 2006, and it is used for lots of things such as:

• DOM manipulation
• AJAX calls
• Event handling
• Animation
• Plugins (Datepicker etc.)

Here is a jQuery version of the same apple stock code (you can note that the
jQuery version is not necessarily clearer than the vanilla Javascript one…) :

Apple stock price

<!DOCTYPE html>

<html>

<head>

<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.2.1/jquer\

y.min.js"></script>

<script>

function refreshAppleStock(){

$.get("https://api.iextrading.com/1.0/stock/aapl/batch?types=quot\

e,news,chart&range=1m&last=10", function(data, status) {

$('#my_cell').html('$' + data.quote.latestPrice);

});

²⁶https://jquery.com/

https://jquery.com/
https://jquery.com/

Dealing with Javascript 59

}

$(document).ready(function(){

$("#refresh").click(function(){

refreshAppleStock();

});

});

</script>

</head>

<body>

<div>

<h2>Apple stock price:</h2>

<div id="my_cell">

</div>

<button id="refresh">Refresh</button>

</div>

</body>

</html>

If you want to know more about Javascript, I suggest you this excellent book:
Eloquent Javascript²⁷

Modern Javascript frameworks

There are several problems with jQuery. It is extremely difficult to write
clean/maintainable code with it as the Javascript application growths. Most of
the time, the codebase becomes full of “glue code”, and you have to be careful
with each id or class name changes. The other big concern is that it can be
complicated to implement data-binding between Javascript models and the
DOM.

²⁷https://eloquentjavascript.net/

https://eloquentjavascript.net/
https://eloquentjavascript.net/

Dealing with Javascript 60

The other problem with the traditional server-side rendering is that it can be
inefficient. Let’s say you are browsing a table on an old website. When you
request the next page, the server is going to render the entire HTML page,
with all the assets and send it back to your browser. With an SPA, only one
HTTP request would have been made, the server would have sent back a JSON
containing the data, and the Javascript frameworkwould have filled theHTML
model it already has with the new values!

Here is a diagram to better understand how it works :

Single Page Application

In theory, SPAs are faster, have better scalability and lots of other benefits
compared to server-side rendering.

That’s why Javascript frameworks were created. There are lots of different
Javascript frameworks :

• AngularJS²⁸ made by Google
• EmberJS²⁹ by Yehuda Katz (ex Jquery team)
• ReactJS³⁰ by Facebook
• VueJS³¹ by Evan You (ex AngularJS team)

These frameworks are often used to create so-called “Single Page Applica-
tions”. There are lots of differences between these, but it is out of this book
scope to dive into it.

²⁸https://angularjs.org/
²⁹https://www.emberjs.com/
³⁰https://reactjs.org/
³¹https://vuejs.org/

https://angularjs.org/
https://www.emberjs.com/
https://reactjs.org/
https://vuejs.org/
https://angularjs.org/
https://www.emberjs.com/
https://reactjs.org/
https://vuejs.org/

Dealing with Javascript 61

It can be challenging to scrape these SPAs because there are often lots of
Ajax calls and websockets³² connections involved. If performance is an issue,
you should always try to reproduce the Javascript code, meaning manually
inspecting all the network calls with your browser inspector, and replicating
the AJAX calls containing interesting data.

So depending on what you want to do, there are several ways to scrape these
websites. For example, if you need to take a screenshot, you will need a real
browser, capable of interpreting and executing all the Javascript code, that is
what the next part is about.

Headless Chrome

We are going to introduce a new feature from Chrome, the headless mode.
There was a rumor going around, that Google used a special version of Chrome
for their crawling needs. I don’t know if this is true, but Google launched the
headless mode for Chrome with Chrome 59 several months ago.

PhantomJS was the leader in this space, it was (and still is) heavy used
for browser automation and testing. After hearing the news about Headless
Chrome, the PhantomJS maintainer said that he was stepping down as
maintainer, because I quote “Google Chrome is faster and more stable than
PhantomJS […]” It looks like Chrome headless is becoming theway to gowhen
it comes to browser automation and dealing with Javascript-heavy websites.

HtmlUnit, PhantomJS, and the other headless browsers are very useful tools,
the problem is they are not as stable as Chrome, and sometimes you will
encounter Javascript errors that would not have happened with Chrome.

Prerequisites

• Google Chrome > 59

³²https://en.wikipedia.org/wiki/WebSocket

https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket

Dealing with Javascript 62

• Chromedriver³³
• Selenium
• In your pom.xml add a recent version of Selenium :

pom.xml

<dependency>

<groupId>org.seleniumhq.selenium</groupId>

<artifactId>selenium-java</artifactId>

<version>3.8.1</version>

</dependency>

If you don’t have Google Chrome installed, you can download it here³⁴ To
install Chromedriver you can use brew on MacOS :

brew install chromedriver

You can also install Chrome driver with npm:

npm install chromedriver

Or download it using the link below. There are a lot of versions, I suggest you
to use the last version of Chrome and chromedriver.

Let’s take a screenshot of a real SPA

We are going to take a screenshot of the Coinbase³⁵ website, which is a
cryptocurrency exchange, made with React framework, and full of API calls
and websocket !

³³https://sites.google.com/a/chromium.org/chromedriver/downloads
³⁴https://www.google.com/chrome/browser/desktop/index.html
³⁵https://pro.coinbase.com/trade/BTC-USD

https://sites.google.com/a/chromium.org/chromedriver/downloads
https://www.google.com/chrome/browser/desktop/index.html
https://pro.coinbase.com/trade/BTC-USD
https://sites.google.com/a/chromium.org/chromedriver/downloads
https://www.google.com/chrome/browser/desktop/index.html
https://pro.coinbase.com/trade/BTC-USD

Dealing with Javascript 63

Coinbase screenshot

We are going to manipulate Chrome in headless mode using the SeleniumAPI.
The first thing we have to do is to create a WebDriver object, whose role is
similar the toe WebClient object with HtmlUnit, and set the chromedriver path
and some arguments :

Chrome driver

// Init chromedriver

String chromeDriverPath = "/Path/To/Chromedriver" ;

System.setProperty("webdriver.chrome.driver", chromeDriverPath);

ChromeOptions options = new ChromeOptions();

options.addArguments("--headless", "--disable-gpu", "--window-size=1920\

,1200","--ignore-certificate-errors");

WebDriver driver = new ChromeDriver(options);

The --disable-gpu option is needed on Windows systems, according to the

Dealing with Javascript 64

documentation³⁶ Chromedriver should automatically find the Google Chrome
executable path, if you have a special installation, or if you want to use a
different version of Chrome, you can do it with :

options.setBinary("/Path/to/specific/version/of/Google Chrome");

If youwant to learnmore about the different options, here is the Chromedriver
documentation³⁷

The next step is to perform a GET request to the Coinbase website, wait for
the page to load and then take a screenshot.

We have done this in a previous article, here is the full code :

GDAX Screenshot example

public class ChromeHeadlessTest {

private static String userName = "" ;

private static String password = "" ;

public static void main(String[] args) throws IOException{

String chromeDriverPath = "/path/to/chromedriver" ;

System.setProperty("webdriver.chrome.driver", chromeDriverPath);

ChromeOptions options = new ChromeOptions();

options.addArguments("--headless", "--disable-gpu", "--window-s\

ize=1920,1200","--ignore-certificate-errors", "--silent");

WebDriver driver = new ChromeDriver(options);

// Get the login page

driver.get("https://pro.coinbase.com/trade/BTC-USD");

Thread.sleep(10000);

// Take a screenshot of the current page

File screenshot = ((TakesScreenshot) driver).getScreenshotAs(Ou\

tputType.FILE);

³⁶https://developers.google.com/web/updates/2017/04/headless-chrome
³⁷https://sites.google.com/a/chromium.org/chromedriver/capabilities

https://developers.google.com/web/updates/2017/04/headless-chrome
https://sites.google.com/a/chromium.org/chromedriver/capabilities
https://sites.google.com/a/chromium.org/chromedriver/capabilities
https://developers.google.com/web/updates/2017/04/headless-chrome
https://sites.google.com/a/chromium.org/chromedriver/capabilities

Dealing with Javascript 65

FileUtils.copyFile(screenshot, new File("screenshot.png"));

driver.close();

driver.quit();

}

}

You should now have a nice screenshot of the Coinbase homepage.

Several things are going on here. The line with the Thread.sleep(10000) allows
the browser to wait for the entire page to load. This is not necessarily the best
method, because maybe we are waiting too long, or too little depending on
multiple factors (your own internet connection, the target website speed etc.).

This is a common problem when scraping SPAs, and one way I like
to solve this is by using the WebDriverWait object:

WebDriverWait usage

WebDriverWait wait = new WebDriverWait(driver, 20);

wait.until(ExpectedConditions.

presenceOfElementLocated(By.xpath("/path/to/element")));

There are lots of different ExpectedConditions you
can find the documentation here³⁸ I often use
ExpectedConditions.visibilityOfAllElementsLocatedBy(locator)

because the element can be present, but hidden until the
asynchronous HTTP call is completed.

This was a brief introduction to headless Chrome and Selenium, now let’s see
some common and useful Selenium objects and methods!

³⁸https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/ExpectedConditions.html

https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/ExpectedConditions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/ExpectedConditions.html

Dealing with Javascript 66

Selenium API

In the Selenium API, almost everything is based around two interfaces : *
WebDriver which is the HTTP client * WebElement which represents a DOM
object

The WebDriver³⁹ can be initialized with almost every browser, and with
different options (and of course, browser-specific options) such as the window
size, the logs file’s path etc.

Here are some useful methods :

Method Description

driver.get(URL) performs a GET request to the
specified URL

driver.getCurrentUrl() returns the current URL
driver.getPageSource() returns the full HTML code for

the current page
driver.navigate().back() navigate one step back in the

history, works with forward
too

driver.switchTo().frame(frameElement)switch to the specified iFrame
driver.manage().getCookies() returns all cookies, lots of other

cookie related methods exists
driver.quit() quits the driver, and closes all

associated windows
driver.findElement(by) returns a WebElement located by

the specified locator

The findElement() method is one of the most interesting for our scraping
needs.

You can locate elements with different ways :

• findElement(By.Xpath('/xpath/expression'))

³⁹https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/WebDriver.html

https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/WebDriver.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/WebDriver.html

Dealing with Javascript 67

• findElement(By.className(className)))

• findElement(By.cssSelector(selector)))

Once you have aWebElement object, there are several useful methods you can
use:

Method Description

findElement(By) you can again use this method, using a
relative selector

click() clicks on the element, like a button
getText() returns the inner text (meaning the

text that is inside the element)
sendKeys('some string') enters some text in an input field
getAttribute('href') returns the attribute’s value(in this

example, the href attribute)

Infinite scroll

Infinite scroll is heavily used in social websites, news websites, or when
dealing with a lot of information. We are going to see three different ways
to scrape infinite scroll.

I’ve set up a basic infinite scroll here: Infinite Scroll⁴⁰ Basically, each time you
scroll near the bottom of the page, an AJAX call is made to an API and more
elements are added to the table.

⁴⁰https://www.javawebscrapingsandbox.com/product/infinite_scroll

https://www.javawebscrapingsandbox.com/product/infinite_scroll
https://www.javawebscrapingsandbox.com/product/infinite_scroll

Dealing with Javascript 68

Infinite table

Scrolling to the bottom

The first way of scraping this page is to make our headless browser scroll to
the bottom of the page. There is a nice method we can use on the Window⁴¹
object, called ScrollTo()⁴². It is really simple to use, you give it an X and Y
coordinate, and it will scroll to that location.

In order to execute this Javascript code, we are going to use a Javascript
executor. It allows us to execute any Javascript code in the context of the
current web page (or more specifically, the current tab). It means we have
access to every Javascript function and variables defined in the current page.

In this example, note that the webpage is showing a fixed 20 rows in the table
on the first load. So if our browser window is too big, we won’t be able to
scroll. This “mistake” was made on purpose. To deal with this, we must tell
our headless Chrome instance to open with a small window size !

⁴¹https://developer.mozilla.org/en-US/docs/Web/API/Window
⁴²https://developer.mozilla.org/en-US/docs/Web/API/Window/scrollTo

https://developer.mozilla.org/en-US/docs/Web/API/Window
https://developer.mozilla.org/en-US/docs/Web/API/Window/scrollTo
https://developer.mozilla.org/en-US/docs/Web/API/Window
https://developer.mozilla.org/en-US/docs/Web/API/Window/scrollTo

Dealing with Javascript 69

Infinite scroll with headless Chrome

String chromeDriverPath = "/path/to/chromedriver" ;

System.setProperty("webdriver.chrome.driver", chromeDriverPath);

ChromeOptions options = new ChromeOptions();

options.addArguments("--headless" ,"--disable-gpu", "--ignore-certifica\

te-errors", "--silent");

// REALLY important option here, you must specify a small window size t\

o be able to scroll

options.addArguments("window-size=600,400");

WebDriver driver = new ChromeDriver(options);

JavascriptExecutor js = (JavascriptExecutor) driver;

int pageNumber = 5 ;

driver.get("https://www.javawebscrapingsandbox.com/product/infinite_scr\

oll");

for(int i = 0; i < pageNumber; i++){

js.executeScript("window.scrollTo(0, document.body.scrollHeight);");

// There are better ways to wait, like using the WebDriverWait obje\

ct

Thread.sleep(1200);

}

List<WebElement> rows = driver.findElements(By.xpath("//tr"));

// do something with the row list

processLines(rows);

driver.quit();

Executing a Javascript function

The second way of doing this, is inspecting the Javascript code to understand
how the infinite scroll is built, to do this, as usual, right click + inspect to open

Dealing with Javascript 70

the Chrome Dev tools, and find the <script> tag that contains the Javascript
code:

Javascript code

$(document).ready(function() {

var win = $(window);

var page = 1 ;

var apiUrl = '/product/api/' + page ;

// Each time the user scrolls

var updatePage = function(){

apiUrl = apiUrl.replace(String(page), "");

page = page + 1;

apiUrl = apiUrl + page;

}

var drawNextLines = function(url){

win.data('ajaxready', false);

$.ajax({

url: url,

dataType: 'json',

success: function(json) {

for(var i = 0; i < json.length; i++){

var tr = document.createElement('tr');

var tdName = document.createElement('td');

var tdUrl = document.createElement('td');

var tdPrice = document.createElement('td');

tdName.innerText = json[i].name;

tdUrl.innerText = json[i].url ;

tdPrice.innerText = json[i].price;

tr.appendChild(tdName);

tr.appendChild(tdUrl);

tr.appendChild(tdPrice);

Dealing with Javascript 71

var table = document.getElementById('table');

table.appendChild(tr);

}

win.data('ajaxready', true);

if(url !== '/product/api/1' && url !== '/product/api/2'\

){

updatePage();

}

$('#loading').hide();

}

});

}

drawNextLines('/product/api/1');

drawNextLines('/product/api/2');

page = 3 ;

apiUrl = '/product/api/3';

// need to update the "ajaxready" variable not to fire multiple ajax ca\

lls when scrolling like crazy

win.data('ajaxready', true).scroll(function() {

// End of the document reached?

if (win.data('ajaxready') == false) return;

// fire the ajax call when we are about to "touch" the bottom of th\

e page

// no more data past 20 pages

if (win.scrollTop() + win.height() > $(document).height() - 100 && \

page < 20) {

$('#loading').show();

drawNextLines(apiUrl);

Dealing with Javascript 72

}

});

});

You don’t have to understand everything there, the only information that is
interesting is that each time we scroll near the bottom of the page (100 pixels
to be precise) the drawNextLines() function is called. It takes one argument, a
URL with this pattern /product/api/:id which will return 10 more rows.

Let’s say we want 50 more rows on our table. Basically we only have to make
a loop and call drawNextLines() five times. If you look closely at the Javascript
code, when the AJAX call is loading, we set the variable ajaxready to false. So
we could check the status of this variable, and wait until it is set to true.

Calling a Javascript function

JavascriptExecutor js = (JavascriptExecutor) driver;

int pageNumber = 5 ;

driver.get("https://www.javawebscrapingsandbox.com/product/infinite_scr\

oll");

// we start at i=3 because on the first load, /product/api/1 and /produ\

ct/api/2 have already been called.

for(int i = 3; i < pageNumber + 3; i++){

js.executeScript("drawNextLines('/product/api/" + i +"');");

while((Boolean)js.executeScript("return win.data('ajaxready');") ==\

false){

Thread.sleep(100);

}

}

List<WebElement> rows = driver.findElements(By.xpath("//tr"));

// do something with the rows

processLines(rows);

Dealing with Javascript 73

The “best” way

My favorite way of scraping website using AJAX is to make the HTTP calls
to the REST API endpoint directly. In this case, it’s pretty easy to understand
what API to call, because the Javascript code is straightforward, but sometimes
it can be more complicated. A good method is to open the Chrome Dev tools,
and look what’s happening in the “network” tab.

Network Tab on Chrome Dev Tools

We can clearly see the API URl being called, and what the response looks like.
Then we can use HtmlUnit or any other HTTP client to perform the requests
we want, and parse the JSON response with the Jackson library for example.

Let’s say we want the 50 first rows :

Dealing with Javascript 74

Direct HTTP calls to the API

WebClient client = new WebClient();

client.getOptions().setJavaScriptEnabled(false);

client.getOptions().setCssEnabled(false);

client.getOptions().setUseInsecureSSL(true);

java.util.logging.Logger.getLogger("com.gargoylesoftware").setLevel(Lev\

el.OFF);

for(int i = 1; i < 5; i++){

Page json = client.getPage("https://www.javawebscrapingsandbox.com/\

product/api/" + i);

parseJson(json.getWebResponse().getContentAsString());

}

The API responds with a JSON array, like this one:

JSON response

[

{

id: 31,

name: "Marmot Drop Line Men's Jacket, Lightweight 100-Weight Sw\

eater Fleece",

price: "74.96",

url: "https://www.amazon.com/gp/product/B075LC96R2/ref=ox_sc_sf\

l_title_39?ie=UTF8"

},

{

id: 32,

name: "ASUS ZenPad 3S 10 9.7" (2048x1536), 4GB RAM, 64GB eMMC, \

5MP Front / 8MP Rear Camera, Android 6.0, Tablet, Titanium Gray (Z500M-\

C1-GR)",

price: "296.07",

url: "https://www.amazon.com/dp/B01MATMXZV?tag=thewire06-20"

},

{

Dealing with Javascript 75

id: 33,

name: "LG Electronics OLED65C7P 65-Inch 4K Ultra HD Smart OLED \

TV (2017 Model)",

price: "2596.99",

url: "https://www.amazon.com/gp/product/B01NAYM1TP/ref=ox_sc_sf\

l_title_35?ie=UTF8"

},

...

]

Here is a simple way to parse this JSON array, loop over every element and
print it to the console. In general, we don’t want to do this, maybe you want
to export it to a CSV file, or save it into a database…

Parsing the JSON response

public static void parseJson(String jsonString) throws JsonProcessingEx\

ception, IOException{

ObjectMapper mapper = new ObjectMapper();

JsonNode rootNode = mapper.readTree(jsonString);

Iterator<JsonNode> elements = rootNode.elements();

while(elements.hasNext()){

JsonNode node = elements.next();

Long id = node.get("id").asLong();

String name = node.get("name").asText();

String price = node.get("price").asText();

System.out.println(String.format("Id: %s - Name: %s - Price: %s\

", id, name, price));

}

}

Dealing with Javascript 76

Here are some tips when working with JS rendered web pages:

• Try to find the hidden API using the network pane in Chrome
Dev Tools

• Try to disable Javascript in your web browser, some websites
switch to a server-side rendering in this case.

• Look for a mobile version of the target website, the UI is
generally easier to scrape. You can check this using your own
phone. If it works without redirecting to a mobile URL (like
https://m.example.com or https://mobile.example.com) try to
spoof the “User-Agent” request header in your request

• If the UI is tough to scrape, with lots of edge cases, look for
Javascript variable in the code, and access the data directly using
the Selenium Javascript Executor to evaluate this variable, as we
saw earlier.

Captcha solving, PDF parsing,
and OCR
In this chapter we are going to see several things, that can block you from
scraping websites / extracting information such as Captchas, data inside PDF
and images.

Captcha solving

Completely Automated Public Turing test to tell Computers and Hu-
mans Apart is what captcha stands for. Captchas are used to prevent
bots/scripts from accessing and performing actions on website or applications.
There are dozens of different captcha types, but you should have seen at least
these two:

Captcha solving, PDF parsing, and OCR 78

Old Captcha

And this one:

Gooogle ReCaptcha v2

The last one is themost used captchamechanism, Google ReCaptcha v2. That’s
why we are going to see how to “break” these captchas.

The only thing the user has to do is to click inside the checkbox. The service
will then analyze lots of factors to determine if it a real user, or a bot. We don’t
know exactly how it is done, Google didn’t disclose this for obvious reasons,
but a lot of speculations has been made:

Captcha solving, PDF parsing, and OCR 79

• Clicking behavior analysis: where did the user click ? Cursor acceleration
etc.

• Browser fingerprinting
• Click location history (do you always click straight on the center, or is it
random, like a normal user)

• Browser history and cookies

For old captchas like the first one, Optical Caracter Recognition and recent
machine-learning frameworks offer an excellent solving accuracy (sometimes
better than Humans…) but for Recaptcha v2 the easiest andmore accurate way
is to use third-party services.

Many companies are offering Captcha Solving API that uses real human
operators to solve captchas, I don’t recommend one in particular, but I have
found 2captcha.com⁴³ easy to use, reliable and cheap (it is $2.99 for 1000
captchas).

Under the hood, 2captcha and other similar APIs need the specific site-key and
the target website URL, with this information they are able to get a human
operator to solve the captcha.

Technically the Recaptcha challenge is an iFramewith somemagical Javascript
code and some hidden input. When you “solve” the challenge, by clicking or
solving an image problem, the hidden input is filled with a valid token.

⁴³https://2captcha.com?from=6028997

https://2captcha.com/?from=6028997
https://2captcha.com/?from=6028997

Captcha solving, PDF parsing, and OCR 80

Hidden input with modified visibility

It is this token that interests us, and 2captcha API will send it back. Then we
will need to fill the hidden input with this token and submit the form.

The first thing you will need to do is to create an account on 2captcha.com⁴⁴
and add some fund.

You will then find your API key on the main dashboard.

As usual, I have set up an example webpage⁴⁵ with a simple form with one
input and a Recaptcha to solve:

⁴⁴https://2captcha.com?from=6028997
⁴⁵https://www.javawebscrapingsandbox.com/captcha

https://2captcha.com/?from=6028997
https://www.javawebscrapingsandbox.com/captcha
https://2captcha.com/?from=6028997
https://www.javawebscrapingsandbox.com/captcha

Captcha solving, PDF parsing, and OCR 81

Form + captcha

We are going to use Chrome in headless mode to post this form and HtmlUnit
to make the API calls to 2captcha (we could use any other HTTP client for
this). Now let’s code.

Instanciate WebDriver and WebClient

final String API_KEY = "YOUR_API_KEY" ;

final String API_BASE_URL = "http://2captcha.com/" ;

final String BASE_URL = "https://www.javawebscrapingsandbox.com/captcha\

";

WebClient client = new WebClient();

client.getOptions().setJavaScriptEnabled(false);

client.getOptions().setCssEnabled(false);

client.getOptions().setUseInsecureSSL(true);

java.util.logging.Logger.getLogger("com.gargoylesoftware").setLevel(Lev\

el.OFF);

// replace with your own chromdriver path

final String chromeDriverPath = "/usr/local/bin/chromedriver" ;

System.setProperty("webdriver.chrome.driver", chromeDriverPath);

Captcha solving, PDF parsing, and OCR 82

ChromeOptions options = new ChromeOptions();

options.addArguments("--headless", "--disable-gpu", "--window-size=1920\

,1200","--ignore-certificate-errors", "--silent");

options.addArguments("--user-agent=Mozilla/5.0 (X11; Linux x86_64) Appl\

eWebKit/537.36 (KHTML, like Gecko) Ubuntu Chromium/60.0.3112.113 Chrome\

/60.0.3112.113 Safari/537.36");

WebDriver driver = new ChromeDriver(options);

driver.get(BASE_URL);

Here is some boilerplate code to instantiate both WebDriver and WebClient,
along with the API URL and key. Then we have to call the 2captcha API with
the site-key, your API key, and the website URL, as documented here⁴⁶. The
API is supposed to respond with a strange format, like this one:OK|123456.

Finding the sitekey and getting a job ID

String siteId = "" ;

WebElement elem = driver.findElement(By.xpath("//div[@class='g-recaptch\

a']"));

try {

siteId = elem.getAttribute("data-sitekey");

} catch (Exception e) {

System.err.println("Catpcha's div cannot be found or missing attrib\

ute data-sitekey");

e.printStackTrace();

}

String QUERY = String.format("%sin.php?key=%s&method=userrecaptcha&goog\

lekey=%s&pageurl=%s&here=now",

API_BASE_URL, API_KEY, siteId, BASE_URL);

Page response = client.getPage(QUERY);

String stringResponse = response.getWebResponse().getContentAsString();

String jobId = "";

if(!stringResponse.contains("OK")){

⁴⁶https://2captcha.com/2captcha-api#solving_recaptchav2_new

https://2captcha.com/2captcha-api#solving_recaptchav2_new
https://2captcha.com/2captcha-api#solving_recaptchav2_new

Captcha solving, PDF parsing, and OCR 83

throw new Exception("Error with 2captcha.com API, received : " + st\

ringResponse);

}else{

jobId = stringResponse.split("\\|")[1];

}

Now that we have the job ID, we have to loop over another API route to
know when the ReCaptcha is solved and get the token, as explained in the
documentation. It returns CAPCHA_NOT_READY and still the weirdly formatted
OK|TOKEN when it is ready:

Solving the Captcha

boolean captchaSolved = false ;

while(!captchaSolved){

response = client

.getPage(String.format("%sres.php?key=%s&action=get&id=%s", API\

_BASE_URL, API_KEY, jobId));

if (response.getWebResponse()

.getContentAsString().contains("CAPCHA_NOT_READY")){

Thread.sleep(3000);

System.out.println("Waiting for 2Captcha.com ...");

}else{

captchaSolved = true ;

System.out.println("Captcha solved !");

}

}

String captchaToken = response.getWebResponse().getContentAsString().sp\

lit("\\|")[1];

Note that it can take up to 1mn based on my experience. It could be a good
idea to implement a safeguard/timeout in the loop because on rare occasions
the captcha never gets solved. Now that we have the magic token, we just
have to find the hidden input, fills it with the token, and submit the form. The
selenium API cannot fill hidden input, so we have to manipulate the DOM to

Captcha solving, PDF parsing, and OCR 84

make the input visible, fills it, make it hidden again so that we can click on the
submit button:

Hidden input

JavascriptExecutor js = (JavascriptExecutor) driver ;

js.executeScript("document

.getElementById('g-recaptcha-response').style.display = 'block';");

WebElement textarea = driver.findElement(By

.xpath("//textarea[@id='g-recaptcha-response']"));

textarea.sendKeys(captchaToken);

js.executeScript("document

.getElementById('g-recaptcha-response').style.display = 'none';");

driver.findElement(By.id("name")).sendKeys("Kevin");

driver.getPageSource();

driver.findElement(By.id("submit")).click();

if(driver.getPageSource().contains("your captcha was successfully submi\

tted")){

System.out.println("Captcha successfuly submitted !");

}else{

System.out.println("Error while submitting captcha");

}

And that’s it :) Generally, websites don’t use ReCaptcha for each HTTP
requests, but only for suspicious ones, or for specific actions like account
creation, etc. You should always try to figure out if the website is showing you
a captcha / Recaptcha because you made too many requests with the same IP
address or the same user-agent, or maybe you made too many requests per
second.

As you can see, “Recaptcha solving” is really slow, so the best way to “solve”
this problem is by avoiding catpchas in the first place !

Captcha solving, PDF parsing, and OCR 85

PDF parsing

Adobe created the Portable Document Format in the early 90s. It is still
heavily used today for cross-platform document sharing. Lots of websites use
PDF export for documents, bills, manuals… And maybe you are reading this
eBook in the PDF format. It can be useful to know how to extract pieces of
information from PDF files, and that is what we are going to see.

I made a simple page⁴⁷, with a link to a PDF invoice. The invoice looks like
this:

⁴⁷https://www.javawebscrapingsandbox.com/pdf

https://www.javawebscrapingsandbox.com/pdf
https://www.javawebscrapingsandbox.com/pdf

Captcha solving, PDF parsing, and OCR 86

Invoice

We are going to see how to download this PDF and extract information from
it.

Prerequisites

We will need HtmlUnit to get the webpage and download the PDF, and
PDFBox library to parse it.

Captcha solving, PDF parsing, and OCR 87

pom.xml

<dependency>

<groupId>org.apache.pdfbox</groupId>

<artifactId>pdfbox</artifactId>

<version>2.0.4</version>

</dependency>

Downloading the PDF

Downloading the PDF is simple, as usual: * Go to the target URL * Find the
specific anchor * Extract the download URL from the anchor * Use the Page

object to get the PDF, since it is not an HTML page * Check the content type
of what we just downloaded, to make sure that it is an application/pdf * Copy
the InputStream to a File

Here is the code:

Downloading the invoice

HtmlPage html = client.getPage("https://www.javawebscrapingsandbox.com/\

pdf");

// selects the first anchor which contains "pdf"

HtmlAnchor anchor = html.getFirstByXPath("//a[contains(@href, 'pdf')]");

String pdfUrl = anchor.getHrefAttribute();

Page pdf = client.getPage(pdfUrl);

if(pdf.getWebResponse().getContentType().equals("application/pdf")){

System.out.println("Pdf downloaded");

IOUtils.copy(pdf.getWebResponse().getContentAsStream(),

new FileOutputStream("invoice.pdf"));

System.out.println("Pdf file created");

}

Captcha solving, PDF parsing, and OCR 88

Parsing the PDF

Now that we have the PDF file on disk, we can load it into PDFBox to extract
the content as a String. We are going to extract the price from this invoice.

Once we have the text content from the PDF, it is easy to extract anything
from it, using a regular expression. The text looks like this:

Downloading the invoice

Title

Company Name

4321 First Street

Anytown, State ZIP

Date: 22/06/2018

Project Title: Project Name

Project Description: Description Here

P.O. Number: 12345

Invoice Number: 67890

Terms: 30 Days

Thank you for your business. It’s a pleasure to work with you on your p\

roject.

Your next order will ship in 30 days.

Sincerely yours,

Urna Semper

Description Quantity Unit Price Cost

Item 1 55 € 100 € 5 500

Item 2 13 € 90 € 1 170

Item 3 25 € 50 € 1 250

Subtotal € 7 920

Tax 8,25 % € 653

Total € 8 573

!1

INVOICE

123-456-7890

no_reply@example.com

1234 Main Street

Captcha solving, PDF parsing, and OCR 89

Anytown, State

ZIP

COMPANY NAME

We just have to loop over each line, and use a regular expression with a
capturing group like this one: "Total\\s+€\\s+(.+)" to extract the total price.
We could extract everything we want with another regex, like the email
address, the postal address, invoice number…

Here is the full code:

Scraping the Invoice

PDDocument document = null;

try{

document = PDDocument.load(new File("invoice.pdf")) ;

PDFTextStripperByArea stripper = new PDFTextStripperByArea();

stripper.setSortByPosition(true);

PDFTextStripper tStripper = new PDFTextStripper();

String stringPdf = tStripper.getText(document);

String lines[] = stringPdf.split("\\n");

String pattern = "Total\\s+€\\s+(.+)";

Pattern p = Pattern.compile(pattern);

String price = "";

for (String line : lines) {

Matcher m = p.matcher(line);

if(m.find()){

price = m.group(1);

}

}

if(!price.isEmpty()){

System.out.println("Price found: " + price);

}else{

Captcha solving, PDF parsing, and OCR 90

System.out.println("Price not found");

}

}finally{

if(document != null){

document.close();

}

}

There are many methods in the PDFBox library, you can work with password
protected PDF, extract specific text area, and many more, here is the docu-
mentation⁴⁸.

Optical Caracter Recognition

Now that we saw how to deal with PDF, we are going to see how to handle
text inside images. Using text inside images is an obfuscation technique aimed
to make the extraction difficult for bots. You can often find these techniques
on blogs or marketplaces to “hide” an email address/phone number.

Extracting text from an image is called “Optical Caracter Recognition” or OCR.
There are many OCR library available, but we are going to use Tesseract⁴⁹
which is one of the best open source OCR library.

Installation

Installing Tesseract and all dependencies is really easy, on linux:

⁴⁸https://pdfbox.apache.org/docs/2.0.8/javadocs/
⁴⁹https://github.com/tesseract-ocr/

https://pdfbox.apache.org/docs/2.0.8/javadocs/
https://pdfbox.apache.org/docs/2.0.8/javadocs/
https://github.com/tesseract-ocr/
https://pdfbox.apache.org/docs/2.0.8/javadocs/
https://github.com/tesseract-ocr/

Captcha solving, PDF parsing, and OCR 91

sudo apt install tesseract-ocr

sudo apt install libtesseract-dev

````

And on macOS:

brew install tesseract “‘

More information about installing Tesseract with specific tags can be found
here⁵⁰

Tesseract is written in C++, so we need some kind of Java bindings. We are
going to use the http://bytedeco.org/ bindings:

pom.xml

<dependency>

<groupId>org.bytedeco.javacpp-presets</groupId>

<artifactId>tesseract-platform</artifactId>

<version>3.05.01-1.4.1</version>

</dependency>

Tesseract example

I took a screenshot of the previous PDF:

⁵⁰https://github.com/tesseract-ocr/tesseract/wiki

https://github.com/tesseract-ocr/tesseract/wiki
https://github.com/tesseract-ocr/tesseract/wiki


Captcha solving, PDF parsing, and OCR 92

OCR example

Let’s say we want to extract the invoice number.

The first thing is to locate your tessdata folder, it contains everything
tesseract needs to recognize language specific characters. The location will
vary depending on how you installed tesseract.

final static String TESS_DATA_PATH = "/path/to/tessdata" ;

Here is the full code:

OCR example

BytePointer outText;

TessBaseAPI api = new TessBaseAPI();

if (api.Init(TESS_DATA_PATH, "ENG") != 0) {

System.err.println("Could not initialize tesseract.");

System.exit(1);

}

PIX image = lept.pixRead("ocr_exemple.jpg");

api.SetImage(image);



Captcha solving, PDF parsing, and OCR 93

// Get OCR result

outText = api.GetUTF8Text();

String string = outText.getString();

String invoiceNumber = "" ;

for(String lines : string.split("\\n")){

if(lines.contains("Invoice")){

invoiceNumber = lines.split("Invoice Number: ")[1];

System.out.println(String.format("Invoice number found : %s", i\

nvoiceNumber));

}

}

// Destroy used object and release memory

api.End();

outText.deallocate();

lept.pixDestroy(image);

This was just an example on how to use Tesseract for simple OCR, I’m not an
expert on OCR and image processing, but here are some tips:

Initialize Tesseract with the right language. Image processing: im-
age cropping, different contrasts, re-scaling, border removal… can
significantly improve the quality of the Tesseract output. You can
use some options like api.SetVariable("tessedit_char_whitelist",

"0123456789,") to only include numerical characters. This will avoid
confusion like l instead of 1 see the documentation⁵¹ for more
informations about this.

⁵¹https://github.com/tesseract-ocr/tesseract/wiki

https://github.com/tesseract-ocr/tesseract/wiki
https://github.com/tesseract-ocr/tesseract/wiki


Stay under cover
In this chapter, we are going to see how to make our bots look like Humans.
For various reasons, there are sometimes anti-bot mechanisms implemented
on websites. The most obvious reason to protect sites from bots is to prevent
heavy automated traffic to impact a website’s performance. Another reason is
to stop bad behavior from bots like spam.

There are various protection mechanisms. Sometime your bot will be blocked
if it does too many requests per second / hour / day. Sometimes there is a rate
limit on how many requests per IP address. The most difficult protection is
when there is a user behavior analysis. For example, the website could analyze
the time between requests, if the same IP is making requests concurrently.

You won’t necessarily need all the advice in this chapter, but it might help you
in case your bot is not working, or things don’t work in your Java code the
same as it works with a real browser.

Headers

In Chapter 3 we introduced HTTP headers. Your browser includes system-
atically 6-7 headers, as you can see by inspecting a request in your browser
network inspector:



Stay under cover 95

Request headers

If you don’t send these headers in your requests, the target server can easily
recognize that your request is not sent from a regular web browser. If the
server has some kind of anti-bot mechanism, different things can happen: *
The HTTP response can change * Your IP address could be blocked * Captcha
* Rate limit on your requests

HtmlUnit provides a really simple way to customize our HTTP client’s headers

Init WebClient with request headers

WebClient client = new WebClient();

client.addRequestHeader("Accept", "text/html,application/xhtml+xml,appl\

ication/xml;q=0.9,image/webp,image/apng,*/*;q=0.8");

client.addRequestHeader("Accept-Encoding", "gzip, deflate, br");

client.addRequestHeader("Accept-Language", "en-US,en;q=0.9,fr-FR;q=0.8,\

fr;q=0.7,la;q=0.6");

client.addRequestHeader("Connection", "keep-alive");

client.addRequestHeader("Host", "ksah.in");

client.addRequestHeader("User-Agent", "Mozilla/5.0 (Macintosh; Intel Ma\

c OS X 10_13_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396\

.99 Safari/537.36");

client.addRequestHeader("Pragma", "no-cache");

We could go even further, and assign a random User-Agent to our WebClient.
Randomizing user-agents will help a lot to hide our bot. A good solution is to
create a list of common User-Agents and pick a random one.



Stay under cover 96

You can find such a list here https://developers.whatismybrowser.com/useragents/explore/

We could create a file with a lot of different user agents:

user-agents.txt

Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/535.1 (KHTML, like Geck\

o) Chrome/13.0.782.112 Safari/535.1

Mozilla/5.0 (Windows NT 6.0) AppleWebKit/535.1 (KHTML, like Gecko) Chro\

me/13.0.782.112 Safari/535.1

Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.31 (KHTML, like Gec\

ko) Chrome/26.0.1410.64 Safari/537.31

Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gec\

ko) Chrome/27.0.1453.116 Safari/537.36

Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gec\

ko) Chrome/27.0.1453.110 Safari/537.36

Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.1 (KHTML, like Geck\

o) Chrome/21.0.1180.89 Safari/537.1

Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US) AppleWebKit/532.2 (KHTM\

L, like Gecko) Chrome/4.0.221.7 Safari/532.2

Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US) AppleWebKit/525.13 (KHT\

ML, like Gecko) Chrome/0.2.149.29 Safari/525.13

Mozilla/5.0 (Windows NT 5.1; rv:5.0.1) Gecko/20100101 Firefox/5.0.1

Mozilla/5.0 (Windows NT 6.1; rv:5.0) Gecko/20100101 Firefox/5.02

Mozilla/5.0 (Windows NT 6.1; WOW64; rv:5.0) Gecko/20100101 Firefox/5.0

Mozilla/5.0 (Windows NT 6.1; rv:2.0b7pre) Gecko/20100921 Firefox/4.0b7p\

re

Mozilla/5.0 (X11; U; Linux x86; fr-fr) Gecko/20100423 Ubuntu/10.04 (luc\

id) Firefox/3.6.3 AppleWebKit/532.4 Safari/532.4

Mozilla/5.0 (Windows; U; Windows NT 5.1; fr; rv:1.9.0.11) Gecko/2009060\

215 Firefox/3.0.11

Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.9.1.3) Gecko/20090\

824 Firefox/3.5.3 GTB5

And then have a little helper method that reads this file, and returns a random
user agent:



Stay under cover 97

Random user agent method

private static String getRandomUseragent(){

List<String> userAgents = new ArrayList<String>();

Random rand = new Random();

try (BufferedReader br = new BufferedReader(new FileReader(FILENAME\

))) {

String sCurrentLine;

while ((sCurrentLine = br.readLine()) != null) {

userAgents.add(sCurrentLine);

}

} catch (IOException e) {

e.printStackTrace();

}

return userAgents.get(rand.nextInt(userAgents.size()));

}

We can then assign a random user agent to the WebClient instance:

Set user-agent

client.addRequestHeader("User-Agent", getRandomUseragent());

Proxies

The easiest solution to hide our scrapers is to use proxies. In combination with
random user-agent, using a proxy is a powerful method to hide our scrapers,
and scrape rate-limited web pages. Of course, it’s better not be blocked in the
first place, but sometimes websites allow only a certain amount of request per
day / hour.

In these cases, you should use a proxy. There are lots of free proxy list, I
don’t recommend using these because there are often slow, unreliable, and



Stay under cover 98

websites offering these lists are not always transparent about where these
proxies are located. Sometimes the public proxy list is operated by a legit
company, offering premium proxies, and sometimes not…What I recommend
is using a paid proxy service, or you could build your own.

Setting a proxy to HtmlUnit is easy:

ProxyConfig proxyConfig = new ProxyConfig("host", myPort);

client.getOptions().setProxyConfig(proxyConfig);

Scrapoxy⁵² is a great open source API, allowing you to build a proxy API on
top of different cloud providers.

http://scrapoxy.io/

Scrapoxy creates a proxy
pool by creating instances
on various cloud providers
(AWS,OVH,Digital Ocean).
Then you will configure
HtmlUnit or any HTTP
client with the Scrapoxy

URL, and it will automatically assign a proxy inside the proxy pool.

You can configure Scrapoxy to fit your needs, and set a minimum / maximum
instance number, manage blacklisting of course, either within the configu-
ration file, for example you could blacklist any proxy receiving a 503 HTTP
response or programmaticaly with the REST API, in case the website blocks
you with a Captcha, or a special web page.

TOR: The Onion Router

⁵²http://scrapoxy.io/

http://scrapoxy.io/
http://scrapoxy.io/


Stay under cover 99

https://www.torproject.org/

TOR, also known as The
Onion Router⁵³ is a world-
wide computer network de-
signed to route traffic through
many different servers to
hide its origin. TOR us-
agemakes network surveil-
lance / traffic analysis very
difficult. There are a lot of
use cases for TOR usage,
such as privacy, freedom of
speech, journalists in dicta-

torship regime, and of course, illegal activities.

In the context of web scraping, TOR can hide your IP address, and change your
bot’s IP address every 10 minutes. The TOR exit nodes IP addresses are public.
Some websites block TOR traffic using a simple rule: if the server receives a
request from one of TOR public exit node, it will block it. That’s why in many
cases, TOR won’t help you, compared to classic proxies.

Using TOR is really easy, go to the download page, or using your package
manager, on macOS:

brew install tor

Then you have to launch to TOR daemon, and set the proxy config for the
WebClient

⁵³https://www.torproject.org/

https://www.torproject.org/
https://www.torproject.org/
https://www.torproject.org/


Stay under cover 100

Random user agent method

WebClient webClient = new WebClient();

ProxyConfig prc = new ProxyConfig("localhost", 9150, true);

webClient.getOptions().setProxyConfig(prc);

Tips

Cookies

Cookies are used for lots of reasons, as discussed earlier. If you find that the
target website is responding differently with your bots, try to analyze the
cookies that are set by client-side Javascript code and inject them manually.
You could also use Chrome with the headless mode for better cookie handling.

Timing

If you want to hide your scrapers, you have to behave like a human. Timing
is key. Humans don’t mass click on links 0.2 seconds after arriving to a web
page. They don’t click on each link every 5 seconds too. Add some random
time between your requests to hide your scrapers.

Fast scraping is not a good practice. You will get blocked, and if you do this on
small websites it will put a lot of pressure on the website’s servers, it can even
be illegal in some cases, as it can be considered like an attack.

Invisible elements

Invisible elements is a technique often used to detect bot accessing and
crawling a website. Generally, one or more elements are hidden with CSS
and there is some code that notifies the website’s server if there is a click on



Stay under cover 101

the element, or a request to a hidden link. Then the server will block the bot’s
IP address.

A good way to avoid this trap is to use the isDisplayed() method with the
Selenium API:

Interracting with visible elements only

WebElement elem = driver.findElement(By.xpath("//div[@class='something'\

]"));

if(elem.isDisplayed()){

// do something

}

Another technique is to include hidden inputs in a form. If you have problems
submitting a form that contains hidden inputs, make sure you include those
inputs in your request, and don’t modify their value.

Hidden input

<form>

<input type="hidden" name="itsatrap" value="value1"/>

<input type="text" name="email"/>

<input type="submit" value="Submit"/>

</form>



Cloud scraping
Serverless

In this chapter, we are going to introduce serverless deployment for our
bots. Serverless is a term referring to the execution of code inside ephemeral
containers (Function As A Service, or FaaS). It is a hot topic in 2018, after the
“micro-service” hype, here come the “nano-services”!

Cloud functions can be triggered by different things such as:

• An HTTP call to a REST API
• A job in message queue
• A log
• IOT event

Cloud functions are a really good fit for web scraping for many reasons. Web
Scraping is I/O bound, most of the time is spent waiting for HTTP responses,
so we don’t need high end CPU servers. Cloud functions are cheap and easy
to setup. Cloud function are a good fit for parallel computing, we can create
hundreds or thousands of function at the same time for large scale scraping.



Cloud scraping 103

Deploying an Azure function

We
are going to deploy a scraper into Azure cloud function. I don’t have any
preferred vendor, AWS Lambda is a great platform too. Google Cloud doesn’t
support Java at the moment, only Node.js.

We are going to re-use the Hacker news scraper we built in chapter 3 and
implement a little API on top of it, so that we will be able to call this API with
a page parameter, and the function will return a JSON array of each hacker
news item for this page number.

Prerequisites

You will need :

• JDK 8
• Maven 3+
• Azure CLI⁵⁴
⁵⁴https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest

https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest


Cloud scraping 104

• Azure function tools⁵⁵
• Azure Account⁵⁶

There are platform-specific instructions for each Azure component installa-
tion, I suggest you go through instructions carefully.

Once everything is installed on your system, make sure to log in with the
Azure CLI:

az login

Creating, running and deploying a project

We are going to use a Maven archetype⁵⁷ to create the project structure:

Maven archetype

mvn archetype:generate \

-DarchetypeGroupId=com.microsoft.azure \

-DarchetypeArtifactId=azure-functions-archetype

Then Maven will ask you details about the project. The generated code is
concise and straightforward:

⁵⁵https://docs.microsoft.com/en-us/azure/azure-functions/functions-run-local#v2
⁵⁶https://azure.microsoft.com/en-us/free/
⁵⁷https://maven.apache.org/guides/introduction/introduction-to-archetypes.html

https://docs.microsoft.com/en-us/azure/azure-functions/functions-run-local#v2
https://azure.microsoft.com/en-us/free/
https://maven.apache.org/guides/introduction/introduction-to-archetypes.html
https://docs.microsoft.com/en-us/azure/azure-functions/functions-run-local#v2
https://azure.microsoft.com/en-us/free/
https://maven.apache.org/guides/introduction/introduction-to-archetypes.html


Cloud scraping 105

Auto generated function

public class Function {

/**

* This function listens at endpoint "/api/hello". Two ways to invo\

ke it using "curl" command in bash:

* 1. curl -d "HTTP Body" {your host}/api/hello

* 2. curl {your host}/api/hello?name=HTTP%20Query

*/

@FunctionName("hello")

public HttpResponseMessage<String> hello(

@HttpTrigger(name = "req", methods = {"get"}, authLevel = A\

uthorizationLevel.ANONYMOUS) HttpRequestMessage<Optional<String>> reque\

st,

final ExecutionContext context) {

context.getLogger().info("Java HTTP trigger processed a request\

.");

// Parse query parameter

String query = request.getQueryParameters().get("name");

String name = request.getBody().orElse(query);

if (name == null) {

return request.createResponse(400, "Please pass a name on t\

he query string or in the request body");

} else {

return request.createResponse(200, "Hello, " + name);

}

}

}

The generated code does not protect the API. The
AuthorizationLevel.ANONYMOUS means anyone can call the route.
To implement an authorization mechanism in your function, read
the Azure documentation on the subject.



Cloud scraping 106

You can then test and run the generated code:

mvn clean package

mvn azure-functions:run

There might be some errors if you didn’t correctly install the previous
requirements.

Deploying your Azure Function is as easy as:

mvn azure-functions:deploy

Azure will create a new URL for your function each time you deploy your app.

The first invocation will be very slow, it can sometimes take up to one minute.
This “issue” is called cold start. The first time you invoke a function, or when
you haven’t called a function for a “long” time (i.e several minutes), Azure has
to :

• spin a server
• configure it
• load your function code and all the dependencies

and then it can run your code.

When the app is warm, it just has to run your code, and it will be much much
faster. If the cold start is an issue for you, you can use the dedicated mode.

More information about this subject can be found here⁵⁸.

You can see your function and the logs in your Azure Dashboard:

⁵⁸https://blogs.msdn.microsoft.com/appserviceteam/2018/02/07/understanding-serverless-cold-start/

https://blogs.msdn.microsoft.com/appserviceteam/2018/02/07/understanding-serverless-cold-start/
https://blogs.msdn.microsoft.com/appserviceteam/2018/02/07/understanding-serverless-cold-start/


Cloud scraping 107

https://azure.microsoft.com/

Updating the function

We are going to rename the function to hnitems. We can remove the post
method since we only need to make GET requests. Then we need to check the
page number parameter, and handle the case where a non numeric value is
passed.

Basically, we just change the function name from hello to hnitems and the
request parameter from name to pageNumber.

The HNScraper class is a slightly modified version of the one in chapter 3. The
method scrape takes a pageNumber and returns a JSON Array of all hacker
news items for this page. You can find the full code in the repository.



Cloud scraping 108

Function hnitems

@FunctionName("hnitems")

public HttpResponseMessage<String> hnitems(

@HttpTrigger(name = "req", methods = {"get"}, authLevel = Autho\

rizationLevel.ANONYMOUS) HttpRequestMessage<Optional<String>> request,

final ExecutionContext context) {

context.getLogger().info("Java HTTP trigger processed a request.");

// Parse query parameter

String pageNumber = request.getQueryParameters().get("pageNumber");

if (pageNumber == null) {

return request.createResponse(400, "Please pass a pageNumber on\

the query string");

}else if(!StringUtils.isNumeric(pageNumber)) {

return request.createResponse(400, "Please pass a numeric pageN\

umber on the query string");

}else {

HNScraper scraper = new HNScraper();

String json;

try {

json = scraper.scrape(pageNumber);

} catch (JsonProcessingException e) {

e.printStackTrace();

return request.createResponse(500, "Internal Server Error w\

hile processing HN items: ");

}

return request.createResponse(200, json);

}

}

You can now deploy the updated code using:



Cloud scraping 109

mvn clean package

mvn azure-functions:deploy

You should have your function URL in the log. It’s time to test our modified
API (replace ${function_url} with your own URL)

curl https://${function_url}/api/hnitems?pageNumber=3

And it should respond with the corresponding JSON Array:

Json Response

[

{

"title": "Nvidia Can Artificially Create Slow Motion That Is Be\

tter Than a 300K FPS Camera (vice.com)",

"url": "https://motherboard.vice.com/en_us/article/ywejmy/nvidi\

a-ai-slow-motion-better-than-a-300000-fps-camera",

"author": "jedberg",

"score": 27,

"position": 121,

"id": 17597105

},

{

"title": "Why fundraising is a terrible experience for founders\

: Lessons learned (kapwing.com)",

"url": "https://www.kapwing.com/blog/the-terrible-truths-of-fun\

draising/",

"author": "jenthoven",

"score": 74,

"position": 122,

"id": 17594807

},

{

"title": "Why No HTTPS? (whynohttps.com)",

"url": "https://whynohttps.com",



Cloud scraping 110

"author": "iafrikan",

"score": 62,

"position": 123,

"id": 17599022

},

...

This is it. Instead of returning the JSON array, we could store it in the different
database systems supported by Azure.

I suggest you experiment, especially around messaging queues. An interesting
architecture for your scrapping project could be to send jobs into a message
queue, let Azure function consume these jobs, and save the results into a
database. You can read more about this subject here⁵⁹

The possibilities of Azure and other Cloud providers like AmazonWeb Service
are endless and easy to implement, especially serverless architecture, and I
really recommend you to experiment with these tools.

Conclusion

This is the end of this guide. I hope you enjoyed it. You should now be
able to write your own scrapers, inspect the DOM and network request, deal
with Javascript, reproduce AJAX calls, beat Catpcha and Recaptcha, hide your
scrapers with different techniques, and deploy your code in the cloud !

This book will never be finished, as I get so much feedback from my readers.
There are many chapters I would like to add. More case study, a chapter about
the legal side of web scraping, a chapter about multithreaded scraping etc. If
there is enough people interested, I will maybe create a full online video course
:)

I made a Google Form⁶⁰ to get feedback from my readers, I would really
appreciate if you could answer it !

⁵⁹https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-storage-queue-triggered-function
⁶⁰https://docs.google.com/forms/d/e/1FAIpQLSeis4z-NHXeFJfeRLQ6L82-YawEb6ABrOWsN0F4ZIsPZp6cug/viewform

https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-storage-queue-triggered-function
https://docs.google.com/forms/d/e/1FAIpQLSeis4z-NHXeFJfeRLQ6L82-YawEb6ABrOWsN0F4ZIsPZp6cug/viewform
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-storage-queue-triggered-function
https://docs.google.com/forms/d/e/1FAIpQLSeis4z-NHXeFJfeRLQ6L82-YawEb6ABrOWsN0F4ZIsPZp6cug/viewform


Cloud scraping 111

You can send me an email at hi@ksah.in and also find me on Twitter⁶¹ !

Kevin

⁶¹https://twitter.com/SahinKevin

https://twitter.com/SahinKevin
https://twitter.com/SahinKevin

	Table of Contents
	Introduction to Web scraping
	Web Scraping VS APIs
	Web scraping use cases
	What you will learn in this book

	Web fundamentals
	HyperText Transfer Protocol
	HTML and the Document Object Model
	Web extraction process
	Xpath
	Regular Expression

	Extracting the data you want
	Tools
	Let's scrape Hacker News
	Go further

	Handling forms
	Form Theory
	Case study: Hacker News authentication
	File Upload
	Other forms

	Dealing with Javascript
	Javascript 101
	Headless Chrome
	Selenium API
	Infinite scroll

	Captcha solving, PDF parsing, and OCR
	Captcha solving
	PDF parsing
	Optical Caracter Recognition

	Stay under cover
	Headers
	Proxies
	TOR: The Onion Router
	Tips

	Cloud scraping
	Serverless
	Deploying an Azure function
	Conclusion


